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ABSTRACT

Very large scale integrated (VLSI) circuit technology allows one to manufacture

U chips with several million devices. Designing such large circuits cannot be accomplished

without design automation tools and computer-aided design tools., This thesis addresses

the problem of automatic circuit synthesis for double-metal CMOS technology. Large

3 circuits are partitioned into cells and represented as incidence matrices. The rows and

columns of these matrices are folded to minimize the area. A symbolic layout is then

generated for each matrix. This symbolic layout is then used to generate the physical

mask layers necessary for fabrication in the metal-metal matrix methodology. -.
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e CHAPTER 1.

5 INTRODUCTION

I
The VLSI engineer faces an increasingly difficult problem as the level of integration

I increases. Today, VLSI chips with several million devices can be manufactured

[Koba89a]. In order to cope with the problem of designing such large circuits, engineers

have employed a hierarchical design methodology. In addition to this hierarchy, comput-

I ers have become an integral part of the design process. Computers are used extensively

at each stage of the design process to increase the productivity of the engineer. However,

as the number of devices on a chip continues to increase, more sophisticated software

U tools must be developed in order for the design of complex systems to be completed in a

3 reasonable amount of time.

The current approach to designing VLSI systems can be divided into the following

tasks, which are shown in Figure 1.1:

1 1) Architectural Design

2) Logic Synthesis and Design

3) Gate/Circuit Design

U 4) Layout

5) Simulation and Verification

6) Reiterate the above until specifications are met.

I
U
I
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Architectural

Design

Logic Synthesis
and

DesignI

Gate/CircuitI
Design

Layout

Figure 1.1. The Progression of VLSI Circuit DesignI
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3 1.1. Architectural design

Architectural design provides the most abstract view of a circuit. The goal of archi-

I tectural design is to specify the behavioral aspects of the circuit, such as, its functionality

3 and interfacing requirements. The general features that are usually decided on in this

phase are the circuit's architecture, such as, a sequential machine design or a pipelined

U machine design, the number and width of busses, and the placement and size estimates of

3 large functional blocks. This specification can be captured by using flowcharts, or a

hardware description language. The hardware description language approach is becom-

I ing more popular for several reasons. First, hardware description languages contain con-

3 structs for expressing the circuit in a hierarchal and structured fashion. This allows cir-

cuits to be written as a collection of modules. Each module performs a well-defined

I function and can be builtup from simpler modules. Each of these modules can be tested

independently, which reduces the time necessary to verify the entire system. Also, this

hierarchal decomposition of the system aids in the conceptual understanding of the cir-

U cuit, since modules which use a particular module need to know only about its interfac-

ing requirements and not its implementation details. Second, this representation of the

circuit is easier for the computer to understand and thus, the system behavior can be

I simulated. This allows the designer to characterize many different implementations, so

3 that a well-informed decision can be made. Third, a major source of errors in the design

process can be attributed to conversion errors between the levels of the hierarchy. These

I errors can be reduced by using a computer to perform the necessary translations from the

3 hardware description language. Some of the tools used in this phase are silicon com-

I

I
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pilers [Bray84a, Feld83a, Gajs84a, Sout85a, Youn85a] and floorplanning tools

[Otte82a, Wime88a].

1.2. Logic synthesis and design

The logic synthesis and design phase provides a more refined view of the circuit I
than architectural design. This phase decomposes the high-level descriptions of the func-

tional blocks obtained from architectural design into gates, such as, NANDs, NORs,

FLIP-FLOPs, etc. This decomposition process can be performed independently for each I
of the functional blocks. Some of the key problems in this phase are state assignment for

finite state machines, logic minimization, and logic simulation.

State assignment and logic minimization are an integral part of this phase, because U
they will decrease the area and increase the speed Qf the circuit. Logic minimizers allow 3
the designer to use equations in forms that best describe the problem without having to

worry about how the equation should be written to get the best speed and/or area. Many U
software tools have been developed to solve the state assignment problem

[DeMi85a, Huer88a], and to perform logic minimization, namely, MINI [Hong74a] and

ESPRESSO [Bray84b] for two level logic minimization, and MIS [Bray87a] and I
SOCRATES [DeGe86a] for multi-level logic minimization. 3

After the functional blocks have been decomposed into their constituent logic gates

and blocks, the circuit is simulated with a logic simulator [Duml83a, Hajj83a] to verify I
the correctness of this design stage. 3

I
I
I
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1.3. Gate/circuit design

In this phase of the design, the circuit is mapped into a particular technology. The

I basic components from logic design are converted into transistor implementations. The

3 designer is concerned with the electrical aspects of the circuit, namely, power consump-

tion, noise margins, and drive capabilities. Various transistor parameters, such as transis-

I tor lengths and widths are determined with the aid of circuit simulation programs, such as

SPICE [Nage75a] or SLATE [Yang80a]. Recently, circuit optimization programs have

been developed to assist the designer in determining the proper transistor sizes. Two

I approaches have been explored by researchers, namely, an expert systems based

3 approach, iJADE [Lai87a], for optimizing general CMOS transistor networks, and

iCOACH [Chen88a], a delay modeling approach, for optimizing dynamic CMOS cir-

* cuits.

The mapping from logic blocks to transistors is guided by the layout style that will

be used in the layout design phase. For example, if the layout is to be generated using a

I full-custom approach, very few restrictions are placed on the gate design. On the other

3 hand, if a standard cell approach is used, or if the design is to be implemented in a gate-

array, then the logic blocks are built only from cells that are in the cell library.

1.4. Layout design

The layout design phase takes the transistor networks developed in the circuit

3 design phase and produces the geometrical shapes, which represent the various mask

layers. There are several design approaches in this area, namely, full-custom, semi-

custom, and gate array.

I
I
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In the full-custom approach, very few restrictions are placed on the designer. Sub-

circuit blocks and transistors configurations can be of arbitrary shapes and sizes. Various

CAD tools have been developed to assist the engineer, such as, graphical editors

[Oust84a, Tayl84a], sticks editors [Wil178a], and geometric compactors [Doen87a].

Graphical editors are used to draw each of the rectangles, while sticks editors draw the

circuit using line segments to represent the rectangles. The sticks editor can automati-

cally generate design rule correct layouts from this simpler representation of the

geometry. Geometric compactors have been developed to minimize the area of the lay-

out by shifting, stretching, and squeezing the geometric features into a more optimized

configuration.

The semi-custom approach, which has been very popular in application specific

integrated circuits (ASICs), is more restrictive than the full-custom approach, but

significantly reduces the design time. This reduction in design time is based on two

premises, namely, using cells from previous designs saves time, and blocks of equally

sized cells simplify cell placement. The first objective is achieved by restricting the

designer to a set of predefined cells. These cells have been completely characterized and

provide several different models for simulation. Each cell may have a logic model, a

transistor model, a macro model, and a fast or slow transistor model for process varia- 3
tions. The second objective is realized by designing all the cells to be of equal height

(the width varies with the complexity of the cell). With this restriction the cells can be

efficiently placed in rows. The cells can then be efficiently interconnected using a chan-

nel router (Reed85a]. 3

I
I
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The main asset of the semi-custom approach, its cell library, is also its greatest lia-

bility. The cell library provides a significant reduction in the design cycle, but is only

I useful for the lifetime of the technology in use. In fact, the average cell library generally

lags behind the processing technology by over one year [Kol188a]. The cost of regenerat-

ing a cell library for a new technology is expensive and dependent on the library size.

Thus, from a maintenance viewpoint, the cell library should be as small as possible.

3 However, the quality of the layouts increases with increasing library size [Keut87a].

Hence, most cell libraries are composed of simple gates, inverters, small AND-OR-

I INVERT (AOI) gates, small OR-AND-INVERT (OAI) gates, and several latches.

In addition to the above custom approaches, the designer may implement his design

using gate-arrays [Naka80a, Ornd8la] or sea-of-gates [Noij85a, Saka85a, Ushi88a]. This

I technology has mainly catered to low volume designs. The gate-array and the sea-of-

gates (also known as channel-less gate arrays) technology provides an even quicker

turn-around time than the semi-custom approach. The gate-array wafer is a regular struc-

I ture consisting of rows of equally sized transistors. These wafers are mass produced (up

to metalization) and provide the foundation for all gate-array circuits. Thus, the advan-

tage of the gate-array design is fast turn-around times because only the metalization

I layers need to be designed, since all other processing steps have already been performed.

However, a disadvantage of the gate-array design is its poor performance compared to

full-custom and semi-custom designs due to the gate-array's restriction to equally sized

I transistors.

I
I
I
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1.5. Simulation and verification

In an ideal design environment, a final simulation and verification pass is not neces-

sary. However, in today's design environment, the final simulation and verification pass I
plays a significant role in circuit design; it ensures that the circuit will behave as

designed, and serves to uncover any oversights that may have developed during the

design process. For instance, in a hierarchal design environment, the cells are developed I
independently. The complex interactions between the cells are hard to predict without

the aid of simulation tools. Also, the various software tools used throughout the design

are very complex and cannot be guaranteed to be error free. I
The final simulation and verification pass used in circuit design is usually not very

detailed, since the various subcircuits of the design have already been extensively simu-

lated at many levels during each of the different design phases. This is desirable, since I
the sheer size of the circuit limits the simulation to logic simulation [Mess89a] or fast- 3
timing simulation [Over89a]. I
1.6. Overview

The current approach to layout design has several deficiencies. Although the full- I
custom approach produces high quality layouts, it suffers from long design cycles. The

semi-custom approach is too dependent on its cell library. The semi-custom approach

cannot easily take advantage of advanced transistor minimization techniques which gen-

erate complex transistor configurations. For example, to implement the function 3
F = AD + ACE + BCD + BE,

requires only 10 transistors [Gee89a], as shown in Figure 1.2. However, a 2-level NAND

I
I
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3 gate implementation requires 28 transistors. Although the semi-custom approach does

produce denser layouts with larger cell libraries, the cell library cannot contain cells for

I all logic functions. In fact, maintaining a library of just AOI gates with at most 4 gates in

3 series is prohibitive. Another problem in the layout design of logic devices has been the

impact of parasitics on the circuit performance. Many speed-limiting delay paths are

i formed with long polysilicon features in the vertically stacked active circuit area with

i high fanout counts. These parasitics can be minimized with a second level of metal, by

replacing the long high resistance polysilicon features with low resistance metal features,

i thus improving the circuit response.

i VddI t
I

I
R -0

Figure 1.2. Complex Cell Design

I
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This thesis presents an automatic circuit synthesis system which can take advantage 1
of transistor minimization techniques for MOS circuits, such as applying switching net-

work theory to minimize the number of transistors [Gee89a, Wu85a, Wu87a]. This sys-

tern avoids the high cost of maintaining a large cell library [Keut87a] by generating the

cells dynamically as needed. Since the cells are generated on demand, the synthesis sys-

tem can use the latest design rules available, and the transistors within each cell can be

sized individually to achieve the desired performance. The transistor circuit is parti-

tioned into cells ranging up to 200 transistors in size, and laid out in the metal-metal

matrix (M3) layout methodology [Kang87a] using an automatic cell generator. The cells

in the synthesis system are represented as incidence matrices. The incidence matrix is

symbolically manipulated to minimize the number of rows and columns. The automatic

cell generator will remove vertical constraints imposed on the nets by adding additional 3
columns, so that cells can be generated to a specified maximum height. These constraints

arise naturally from transistor drain-gate-source relationships (the drain-net of a MOS

transistor must be assigned before the gate-net, and the gate-net assigned before the 3
source-net) and from transistors connected in series. The matrix is then converted into a

symbolic layout from which various physical layouts can be generated by specifying dif-

ferent design rules. These cells are then placed and interconnected with a standard cell 3
placement and routing package.

This thesis is organized as follows. Chapter 2 discusses the features that automatic

cell generators should possess in order to synthesize high-performance circuits. This 3
chapter then compares various automatic cell generators, such as, PLAs, Wienberger

I
I
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arrays, and gate matrices. This is followed with a description of the metal-metal matrix

layout methodology, and a discussion on its advantages over other layout methodologies.

I Chapter 3 presents symbolic matrix operations which are applied to the incidence

3 matrices to minimize the area of the cells and to generate a symbolic layout. First, the

impact of merging the columns in the incidence matrix on the physical layout is studied.

I Then, various symbolic matrix compaction methodologies are presented. This is fol-

I lowed by a detailed presentation of the approach used in this thesis. The presentation

begins with a discussion on minimizing the total 1-1 distance, to be defined, to minimize

I the number of columns. Next, the columns are reordered to minimize the number of

3 tracks necessary to lay out the circuit. Once the columns have been reordered, the nets

are assigned to tracks and a symbolic layout is generated.

I In Chapter 4, the issues pertinent to generating a physical layout from a symbolic

representation are discussed. The symbolic layout system uses a variable grid-base

approach and lays out circuits using the M3 layout methodology. Unlike other symbolic

I layout systems, this system provides an additional level of abstraction. The layout sym-

n bols represent simple geometric primitives. The actual mask layers used to construct

these primitives are determined automatically. This chapter begins with an overview of

the symbolic layout system. Next, the layout primitives used in this system will be dis-

cussed as well as the techniques employed to minimize the area.

The next chapter, provides an overview of the entire synthesis system and provides

comparisons with other layout techniques. Finally, Chapter 6 summarizes the results of

n this thesis and presents areas for future research in automatic circuit synthesis. The

I
I
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Appendix provides the algorithm used in iDSIM [Over89a] for pass transistor detection, i

the input file for the 32-bit carry-look-ahead adder, a proof that minimizing the total 1-1

distance is NP-complete, and a user's manual for the synthesis system developed in this 3
thesis.

I
I
I
I
I
I,I
I
I
I
I
I
I
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* CHAPTER 2.

3 BACKGROUND

I
In this chapter, various automatic cell generators and their deficiencies are explored.

In general, the goal of automatic cell generators is to produce high quality layouts for cir-

cuits of various sizes and constraints. Some of the attributes in common to most cell

generators are as follows: cells can be adjusted according to speed and power constraints,

advances in technology can be implemented with little delay, and no time is wasted

3 searching for cells in a large library. Currently, cell generators can be classified into two

distinct architectures, namely, fixed and flexible.

In the fixed architecture cell generator, the layout pattern is fixed, and the logic

functions are implemented by placing transistors or gates in predefined locations, This

simplifies the layout process, but may hamper its ability to interface with other cells. The

fixed architecture generally has no provision for controlling the input/output locations or

3 for controlling the size and/or shape of the cells.

On the other hand, flexible architectures allow the user to control the input/output

locations and the size and shape of cells, at the expense of using more complex layout

I algorithms. However, since all cells will be used in conjunction with other cells, many

local objectives are not as important in the global optimization process. Hence, flexible

architectures may be more advantageous on a global scale.I
I
I
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This chapter then closes with a presentation on an alternative layout style, namely,

metal-metal matrix (M3). The M3 layout methodology is flexible and overcomes many

of the deficiencies inherent in other styles. This style will form the basis for the cell gen-

erator in the iSITE system.

2.1. Programmable logic arrays (PLAs)

Programmable logic arrays provide a convenient and simple method for implement-

ing two-level logic. They are regular structures consisting of two planes: the AND-plane I
and the OR-plane. The AND-plane forms all the minterms for the function and the OR- 3
plane forms the concatenation of the minterms. Depending on the technology, the

AND-OR planes are implemented as NAND-NAND planes or as NOR-NOR planes. I
A typical PLA is shown in Figure 2.1. Notice that the OR-plane is identical in 3

structure to the AND-plane except that it has been rotated 90 degrees. The PLA has a

fixed architecture. Each row of the AND-plane represents one minterm. The input and I
output signals form the columns of the PLA, which run through the entire cell. Transis-

tors are located only at the grid points formed at the intersection of the input/output sig-

nals and the minterms. I
Most PLAs are very sparse, so that the straightforward implementation described in

the previous paragraph would waste a significant amount of area. The area of a PLA is

proportional to the number of columns multiplied by the number of rows, which is equal N
to the product of the number of input/output signals and the number of minterms. So, to 3
reduce the area of a PLA, the number of rows and columns should be minimized. There

are two methodologies for achieving this objective, namely, logic minimization to

I
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Figure 2.1. Programmable Logic ArrayI
minimize the number of minterms, and hence rows, and folding, which can be applied to

I both the rows and the columns.

3 Almost all logic minimization tools in use today are based on heuristic methods,

since an optimal method would require O( 1-Cn) time [Bray84c]. Two heuristic pro-!n
grams used for logic minimization are MINI [Hong74a] and ESPRESSO [Bray84b]. The

I MINI program finds a near minimal solution by iteratively improving an initial solution.

3The cost function is simplified by assigning each implicant a constant cost instead of a

cost proportional to its size. Each iteration consists of three steps: enlargement,I
I
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reduction, and reshaping. The ESPRESSO algorithm is very similar to the MINI algo- 3
rithm. It also uses an iterative improvement algorithm. The cost function used by

ESPRESSO is based on the number of product terms and the number of literals. The I
main loop in the ESPRESSO algorithm consists of expanding each of the terms, finding 3
an irredundant cover, and reducing the cover. Both of these programs try to minimize

the number of implicants. Neither program considers minimizing the complemented I

form of the function, or considers the foldability of the resulting cover.

Folding columns (rows) is simply allowing two columns (rows) to share a single

column (row). Of course, not all columns (rows) of a PLA can be folded. Before two I
columns (rows) can be folded they must be disjoint. Also, folding introduces other con- 3
straints. For instance, folding column i on top of column j forces all the rows containing

signal i to be above all the rows containing signal j, because two signals in a PLA cannot I
be intermixed. Finding the optimal folding set is an NP-complete problem. However,

optimal algorithms [Hwan86a, Lewa84a] are used for simple-folding because parasitic

losses and delays limit the size of PLAs. Heuristic algorithms based on bipartite folding I
[Egan82a], or on graph theory [Hach82a], or on simulated annealing [Deva86a] have also 3
been developed for simply-folded and multiply-folded PLAs.

The PLA can be generalized to implement sequential logic by simply adding I

latches, as shown conceptually in Figure 2.2. This structure, known as the storage logic 3
array [Smit82a], embeds both the AND and the OR operations in one plane and allows

higher level constructs such as latches to be implemented at the grid points. I

U
I
I
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Figure 2.2. Conceptual Diagram of Storage Logic Array

Programmable logic arrays have many deficiencies. Even with folding, PLAs tend

to grow quadratically with respect to input size. They are also very inefficient for some

I types of circuits. A PLA may implement an n-input function with as many as O(2 n) pro-

duct terms. Multi-level logic can be implemented with PLAs, if the logic is partitioned

into a series of two-level logic blocks. However, PLAs cannot be used to implement

I
I
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bridge circuits or other complex transistor configurations generated from transistor

minimization techniques. Also, folding the rows of a PLA places restrictions on the

columns of the PLA, and hence, on the input/output signals. Thus, the pin positions of

these signals may not be controllable by the designer. Finally, the designer has little con-

trol over the aspect ratio of the cell generated.

2.2. Weinberger array

The Weinberger array [Wein67a] is not restricted to two-level logic as in the PLA.

It can implement multi-level Boolean functions using NAND or NOR logic. In the

Weinberger array, the input/output signals run horizontally in metal, while the diffusion

runs vertically. Transistors are created by overlapping the polysilicon layer over the dif- 3
fusion and connecting the polysilicon to the metal lines. Each column in the Weinberger

array represents a single gate. An example of a Weinberger array is shown in Figure 2.3.

All the gates in the Weinberger array are of the same height, independent of the I
number of transistors in each gate. However, columns and rows can be folded to mini- 3
mize the area. A drawback to this style is that it was designed for NMOS technology and

is not easily adaptable to CMOS circuits. Another shortcoming of the Weinberger array I
is that it suffers from high parasitic RC delays due to long diffusion runners. This metho-

dology, like the PLA, cannot implement arbitrary transistor configurations. I
2.3. Gate matrix

The gate matrix layout style [Lope80a] is even less restrictive than the Weinberger I
array. This style can lay out any transistor interconnection pattern. The gate matrix

I
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layout style separates all the transistors of the same type into two regions. The

input/output signals are equally spaced and parallel and run vertically through the cell in

polysilicon. All the transistors driven by the same gate signal are located in the same 3
column underneath the transistors' input signal. In each row of the matrix, the sources

and drains of transistors are interconnected in a series or parallel fashion using horizontal

metal lines. Vertical diffusion runs may be used to interconnect the sources and drains of 3
transistors in different rows. A typical gate matrix layout is shown in Figure 2.4.

To minimize the area of gate matrix layouts, an ordering of the columns must be

found to minimize the number of rows necessary to lay out the circuit. This problem has I
been shown to be NP-complete, so a number of heuristic methods have been developed, 3
namely, interval graphs [Ohts79a, Wing85a], min-cut with dynamic nets [Hwan87a],

Euler paths [Chen88b], and simulated annealing [Leon86a]. I
The interval graph heuristic is based on the premise that the number of tracks neces-

sary to lay out a set of unconstrained intervals without overlapping the intervals on the

same track is equal to the size of the largest clique in its corresponding interval graph U
[Berg7Oa]. Since each connection graph is a subgraph of some interval graph, the prob- 3
lem is to find an interval graph with a minimum clique size which contains the connec-

tion graph. A heuristic algorithm has been developed by Ohtsuki, et al. [Ohts79a], which I
constructs several different augmentations and chooses the interval graph with the smal- 3
lest clique. This method has been applied to gate matrix layouts by Wing, et al.
[Wing85a].

I

I
I
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allow the net binding to be delayed until the signal ordering has been determined, thus3

avoiding many sub-optimal configurations.

The Euler path method [Chen88b] has been used to lay out complex gates in the I
gate matrix layout style. The circuit is represented as a multigraph, where the edges 3
represent the drain/source diffusion area of transistors, and vertices represent the

drain/source connection of the transistor. A path which traverses every edge once in this I
graph is an Euler path. The column order derived from this path is optimal. This method3

can be generalized to circuits with several gates. However, an optimal ordering will be

found only if an Euler path exists. Heuristics can be developed to find a minimal set of I
edges to augment the multigraph so that an Euler path exists.3

Simulated annealing has also been applied to the gate matrix area minimization

problem. Many other heuristic algorithms formulate this minimization problem as a

series of independent sub-problems. Leong [Leon86a] presents a cost function that 3
minimizes the area and the total wire length, with moves that simultaneously consider

gate permutation, dynamic binding, and net merging.

The gate matrix layout style is deficient in two areas, namely, long polysilicon

features in large cells, and power and ground distribution. The long polysilicon features

can result in large parasitic RC delays. These delays can be reduced by using an addi-

tional layer of metal in parallel with the polysilicon lines. However, extra contacts which 3
are difficult if not impossible to add, must be added to electrically connect these layers in

the congested areas of the gate matrix without increasing the area further. Also, this

configuration results in additional parasitic capacitance in the signal lines. The other 3
I
I
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3 problem with the gate matrix layout, the power and ground distribution, is currently

solved with long diffusion runners. However, this is unsatisfactory because of the high

I parasitic resistance and capacitance associated with diffusion runners. If the power and

3 ground is routed entirely in metal, the area can be enlarged by as much as 45 percent.

2.4. Metal-metal matrix (M3) layout

The trend of the future generation of CMOS technology is toward faster circuits

I using smaller features and reduced power supply voltage. Reducing the power supply

3 voltage may require better control over the threshold voltage for both the P-type and the

N-type transistors. Controlling the threshold voltage by using ion-implantation and a sin-

I gle type of polysilicon (Figure 2.5(a)) is vulnerable to interdiffusion problems at finer

3 design rules. A more desirable method would be to form transistors using both P-type

and N-type polysilicon (Figure 2.5(b)) and interconnecting the gates with metal at a later

I processing step.

The two layers of aluminum available in CMOS technology for logic devices has

mainly been used for intercell routing. However, even at a moderately high operating

I frequency, the speed-limiting delay paths are often formed within the cell in the verti-

3 cally stacked active circuit area with high fanout counts. Two-level metal technology

can be used to solve these timing bottlenecks by replacing long polysilicon features with

I aluminum features. The metal-metal matrix (M3) methodology [Kang87a] provides a

3 globally structured layout method for one-layer polysilicon and two-layer aluminum

MOS technology. It employs maximal use of metal interconnections to minimize the

I length of diffusion and polysilicon runners.

I
I
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Figure 2.5. Controlling the Threshold Voltage in Transistors

(a) A Single Polysilicon Runner May Have Interdiffusion Problems I
(b) Separate Polysilicon Features Allows the Threshold Voltage to be

Controlled Independently I

The main objectives of the M3 layout methodology are as follows: 3
1. minimize the length of the polysilicon runners to suppress large parasitic RC

delays, I

2. allow the threshold voltages of PMOS and NMOS transistors to be controlled 3
independently without interdiffusion problems by disallowing vertical stacking

of PMOS and NMOS transistors with a contiguous strip of polysilicon, U
I
I
I
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3 3. allow one contiguous strip of polysilicon between transistors of the same type

to accommodate multiple fanouts,

3 4. make all other interconnections with aluminum runners to minimize parasitic

* RC delays,

5. make all the terminals of modules strictly in metal to facilitate all metal inter-

I cell routing to avoid long polysilicon features in the routing channel.

The above objectives can be realized by forming a matrix with both layers of alumi-

num. In the M3 style, as shown in Figures 2.6(b) and (c), all signals run vertically in

I metal to form the signal columns. Interspersed between these metal lines are diffusion

3columns. The other layer of metal is used to horizontally interconnect the sources and

drains of transistors, to run power and ground busses, and to reduce the length of long

U polysilicon runners bet .veen the transistor gates and their corresponding signal columns.

Short polysil;-on runners between transistor gates and signal columns are permitted.

These horizontal nets can be folded to reduce the layout area. The power and ground

I busses are usually assigned to the first and last track of the cell to facilitate chip level

power and ground distribution.

In this implementation of the M3 layout style, two variations can be generated

automatically. A circuit schematic and its layouts are shown in Figures 2.6(a), (b), and

(c). The first style is aimed at increasing the packing density of circuits that are not on a

critical path, where area constraints are the primary factor. The second style is aimed at

implementing cells in a critical path, where delay constraints are the main concern.

I
I
I
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In the first style, shown in Figure 2.6(b), the first level (lower) metal is used to route

the horizontal metal interconnections and the second level (upper) metal is used for the

I vertical metal interconnections. This implementation of the M3 layout style generally

produces circuits smaller in area than the second implementation (to be discussed next),

since the area underneath the signal columns can be used to accommodate large transis-

U tors, as well as the metall-poly contacts needed to electrically connect the gates of

transistors. However, large cells in this style can suffer from high parasitic resistances

and capacitances due to long diffusion runners.

I In the second style shown in Figure 2.6(c), the functions of the two metal lines are

3 exchanged. In other words, the first level metal lines are used to form the vertical metal

interconnections, and the second level metal lines are used for the horizontal metal inter-

U connections. This scheme allows the long diffusion runners to be easily replaced with

metal, and the parasitic resistances and capacitances are significantly reduced making

this style even more suitable for high-speed circuits.

I Although two different variations of the M3 layout style have been presented, the

same area minimization strategy without any modifications can be applied to both varia-

tions. Both styles have similar structures, and hence, can be represented by one symbolic

I layout, if layer-independent symbols are employed, as in the iSILVER system [Gee88a].

I
I
I
I
U
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CHAPTER 3.

SYMBOLIC CIRCUIT REPRESENTATION AND GENERATION

U
3.1. Incidence matrices

A MOS circuit can be represented as a graph or by its incidence matrix. In the

graph representation, Figure 3.1 (b), each edge corresponds to a transistor and similarly I
labeled edges in the graph represent transistors driven by the same signal. The incidence

matrix is constructed by representing each node in the circuit by a row. Then, for each

transistor in the circuit, a column is inserted in the incidence matrix. This column is I
labeled with the gate signal and has two row entries of Is corresponding to the source

and drain nodes of the transistor. In this implementation, the rows corresponding to

power and ground are restricted to the first and to the last rows of the matrix to facilitate I
inter-cell power and ground routing. The incidence matrix for the circuit in Figure 3.1

(a) is shown in Figure 3.2. For NMOS circuits the single load transistor for each

channel-connected component can be easily implemented in the top portion of the layout

and is omitted in the following discussion.

3.2. Incidence matrix compaction

The incidence matrix for a circuit is generally very sparse. This sparsity can be

reduced by merging columns. Merging two columns together in the incidence matrix I
corresponds to placing the two transistors represented by the columns in the incidence

I
I
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Figure 3.1. Circuit Schematic and its Circuit Graph
(a) Circuit Schematic

(b) Circuit Graph
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U
A B V D C U A D U B V C

Vdd 1 1 1 0 0 0 0 0 0 0 0 0

1 0 0 1 1 0 0 0 0 0 0 0

0 1 1 0 1 1 0 0 0 0 0 0

F 0 0 0 1 0 1 1 1 1 0 0 0

0 0 0 0 0 0 1 1 0 1 0 1

o 0 0 0 0 0 0 0 0 1 1 0

VU 0 0 0 0 0 0 0 0 1 0 1 1

Figure 3.2. Incidence Matrix

matrix in the same physical column. There are several strategies available for merging

the columns in CMOS circuits, namely, unrestricted NMOS and PMOS merging, unres-

trictive NMOS-PMOS transistor pair merging, and merge only transistors of the same

type.

In the unrestricted NMOS and PMOS merging, no distinctions are made between

the transistor types. Transistors may be merged together if they do not overlap. This I
methodology will produce the smallest symbolic layout, but is undesirable because this 3
methodology tends to generate many small well regions.

The second approach, merging NMOS-PMOS transistor pairs, minimizes the I
number of well regions by pairing each NMOS transistor with a PMOS transistor, 3

I
I
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forming alternate rows of NMOS and PMOS transistors, as shown in Figure 3.3(a). To

decrease the number of wells further, every other pair can be mirrored as in Figure

m 3.3(b). Since most signals in CMOS circuits drive (or are driven by) an equal number of

NMOS and PMOS transistors, the span of these signal lines can be significantly reduced.

Hence, the number of transistors and signals that can be folded together is increased.I

U NMOS-PMOS P-type Transistors
Transistor

Pair [ N-type Transistors

* IP
*! IN

(a)

P

I F igr ]..Clm PligMthdlge

Ib iro ingMO-NOSRo _PirtMrg PeRein

]P

* (b)

Figure 3.3. Column Folding MethodologiesI (a) Alternate PMOS-NMOS Transistor Row Layout
(b) Mirroring PMOS-NMOS Row Pairs to Merge Well Regions

I
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The final approach, merging only transistors of the same type, allows all the transis-

tors of a given type to be placed in a single well. However, most signals cannot be

merged together, because of overlapping spans. Although the second approach may

achieve smaller symbolic layouts because the signal columns can be folded, it also incurs

a higher area penalty from having additional wells. The average physical row height for

the second approach is given by

H2 = Wtran + Stran,guard + Wguard + Swell,wei I

for a twin tub CMOS process (shown in Figure 3.4), where

Stran.guard - separation between transistor and guard ring,

SwelLwell = well to well separation, I
Wguard = width of. guard ring,

Wu.n = transistor height (includes source and drain).

However, the average row height for the third approach is given by I

H3 = W + * ( Smguard + Wguad + Sweiwe)H3 Wttm+ Nrow, "I

Assuming,

Stranguurd = L, I
SwelLwell = L,

Wgu.,d = L,

Wtrn = 3L, I
where L is the minimum transistor length. The ratio of the row heights is

I
I
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Thus the second approach will be advantageous only when the area saved by folding sig-

I nal columns results in over a factor of two area savings. In this thesis, only the columns

representing transistors of the same type will be folded.
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3.2.1. Symbolic matrix compaction methodologies

To achieve a compact layout, the sparsity of the Aa matrix is first reduced by merg-

ing columns, and the number of horizontal tracks is reduced by reordering the merged I
columns. The objective of this symbolic matrix compaction is to find a permutation of 3
both the rows and the columns which permits a maximal set of logical columns (and

rows) to be implemented in the same physical column (or row). However, to find the i
minimal M3 layout by inspecting all possible permutations requires time exponential in 3
the number of transistors and the number of signals. This problem can be solved either

as a two-dimensional optimization problem or as a sequence of two simpler one- I
dimensional problems.

A number of methods for performing symbolic matrix compaction such as simu-

lated annealing, folding, or interval-graph based techniques have been used in the past. I
A two-dimensional symbolic matrix compaction method has been developed by Devadas 3
and Newton [Deva86a] using simulated annealing. This method for symbolic matrix

compaction produces slightly denser layouts than folding, but requires much more CPU I
time. i

Folding techniques have been studied extensively and applied mainly to PLAs

[Hach82a, Hwan86a, Lewa84a]. Algorithms exist for optimal simple-folding using

branch-and-bound algorithms [Lewa84a] as well as heuristic techniques for multiple- 3
folding [Hwan86a], mixed row-and-column folding [Hach82a], and simple folding on

compacted incidence matrices [Gee87a]. The method by Hachtel, et al. [Hach82a] for

mixed folding is to fold rows and columns alternately. These algorithms are one- 3
I
!
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1 dimensional compaction algorithms and their running times range from exponential to

O(n3).

I Another technique for symbolic matrix compaction employs interval graphs. This

method is based on the fact that the number of tracks necessary to lay out a set of uncon-

strained intervals without overlapping the intervals on the same track is equal to the size

I of the largest clique in its corresponding interval graph [Berg70a]. Thus in this method

3 the layout problem is represented by a connection graph. Since each connection graph is

a subgraph of some interval graph, the problem is to find an interval graph with a

I minimum clique size which contains the connection graph. A heuristic algorithm has

3 been developed by Ohtsuki, et al. [Ohts79a] which constructs several different augmenta-

tions and chooses the interval graph with the smallest clique. This method has also been

I applied to the gate matrix layout by Wing, et al. [Wing85a] and to PLAs by Yu and Wing

3 [Yu85a].

Although the compaction problem, posed either as a two-dimensional optimization

problem or as two one-dimensional problems, is NP-Complete, a two one-dimensional

3 approach is chosen, mainly because each one-dimensional problem is much smaller in

size than a two-dimensional one, which is an important factor for exponential time algo-

rithms. This heuristic approach does not guarantee the globally minimum-area solution,

but it leads to competitively dense M3 layouts. The motivation for developing heuristic

algorithms is twofold. First, heuristic algorithms can be used to obtain an upper bound in

a short time. This upper-bound can significantly improve the computation time of the

branch-and-bound type algorithms by allowing inferior solutions to be pruned earlier.

I
I
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Second, the resulting layouts generated are often good enough for the problem at hand.

This algorithm minimizes the net density which is a lower bound on the number of tracks

required in the layout. The time complexity of this algorithm is shown to be O(n2). 3
3.2.2. Column merging 3
Definition: Total 1-1 distance

There are exactly two Is in each column of an incidence matrix; the remaining row

entries are all zeros. The distance between the two is in each column as measured by the I
difference in their row numbers is called the 1-1 distance. The sum of 1-1 distances of 3
all columns is defined as the total 1-1 distance of the incidence matrix. 0

The incidence matrix is not unique for each circuit. The rows of the matrix can be

permuted to obtain another equivalent matrix. The total 1-I distance is related to the I
number of symbolic area units required to lay out the circuit. The total 1-1 distance of

the incidence matrix in Figure 3.2 is 11. The rows of the incidence matrix may be per-

muted to minimize the total 1-1 distance. However, finding the minimum total 1-1 dis- -
tance of an incidence matrix is an NP-complete problem.

A heuristic procedure is used to minimize the total 1-1 distance as follows. The

incidence matrix is first represented by a graph where each row corresponds to a node I

and each column to an edge. The two nonzero entries in each column correspond to the

terminal nodes of the edge. Notice that if the n nodes are required to lie in a straight line,

the total number of edges cut by the n- 1 cut lines placed between each of the n-I con- 3
secutive pairs of vertices is equal to the total 1-1 distance of a matrix with the

I
I
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3 corresponding row order. Therefore, minimizing the total number of edges cut by the cut

lines between vertices is equivalent to minimizing the total 1-1 distance of the matrix.

I This algorithm minimizes the total number of edges cut by recursively applying a

min-cut algorithm to the graph. The graph is partitioned into two subgraphs, such that

the number of edges with terminals in both subgraphs is minimized. Before each of these

I subgraphs is partitioned, all the nodes to the right (left) of the current subset of nodes are

3represented as a single node to be called a pseudo node. The new partition with the right

(left) pseudo node will be placed on the right (left), since this partition is in some sense

I more strongly connected to the right (left) side. Therefore partitions with both pseudo

3nodes in the same subgraph are not allowed. Each subgraph is recursively partitioned

until the subgraphs are small enough. For this implementation, a subgraph is considered

I small enough when it consists of one real node.1

3 The columns of the incidence matrix are now merged to form a column-compacted

matrix by using the left-edge-first algorithm [Hash7la]. Figure 3.5 shows the process of

partitioning the NMOS portion of the graph in Figure 3.1. Recall that in M3 layout,

power and ground busses are assigned to the first and last horizontal tracks. So without

loss of generality, assign the V,, node to be the left pseudo node (the Vdd node is

assigned to the right pseudo node). The total 1-1 distance is now reduced from 11 to 9,

1 This heuristic algorithm can be coupled with an optimal algorithm to minimize the total 1-1 dis-
tance. Por instance, a dynamic programming approach which computes all the intermediate states can
solve the minimum total 1-1 distance problem in 0(n22n) time. So, if this dynamic programming approach
is coupled with this heuristic algorithm, then subsets with less than 20 nodes can be considered small
enough. The order of this coupled algorithm is still O(n2) since the time necessary to compute the total I-I1
distance for a fixed sized subset is constant. However, for small n, this algorithm would still behave like
the dynamic programming algorithm, O(n22n), and exhibit the O(n2) behavior only for large n.

I
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Min-Cut: (B, C, U) Min-Cut: (A, D, U)

Node-set: (F 3) (2) (Vs) Node-set: (F) (3) (2) (Vss) g
Figure 3.5. An Example of Min-Cut Ordering for Minimizing the Total 1-1 Distance I

which in this case is the minimum value with the V,, node restricted to the last row in the

incidence matrix. The resulting compacted incidence matrix is shown in Figure 3.6. In

the compacted incidence matrix notation, a "2" represents an overlap of two "1" s. 3
The min-cut procedure to partition the graph into two parts can be done in time 3

0(n2). Therefore the time necessary to recursively partition the graph is Ilor  in212 !2 2n2 .

The matrix can be reordered in time O(n) and the columns are then merged in time 0(n

log n). Thus, the total running time for the column compaction is 0(n2 + n log n + n) =

O002).

I
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Figure 3.6. Column Compacted Incidence Matrix

1 3.2.3. Row merging

The number of tracks in the layout can be minimized by allowing several non-

overlapping nets to share the same track. The net density of the cell is a lower-bound on

3 the number of tracks required to lay out the circuit. However, the net density is depen-

dent on the order of the the signal and diffusion columns, as shown in Figure 3.7.

One possible algorithm for determining a column order which minimizes the

U number of tracks could be based on the min-net-cut algorithm of Kernighan and Lin

3 [Kern70a]. To reduce the number of horizontal tracks, a netlist from the column-

compacted matrix would be generated, and then the K-L min-net-cut algorithm would be

I applied to the netlist to partition the columns into two sets, such that the number of nets

3 with terminals in both sets is minimized. Two pseudo nodes representing all the termi-

nals to the right and to the left of each subset are appended to each half. Then thisI
I
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Figure 3.7. Effect of Column Ordering in Metal-Metal Matrix Layouts !

process is applied to each subset recursively until a complete order is determined. How- I

ever, this algorithm does not produce satisfactory results. This approach for determining

the column ordering corresponds to minimizing the net-density between columns in the

physical layout. However, by minimizing only the net-density between columns, the nets

which terminate just before the cut-line are not counted in the partitioning algorithm. 3
Therefore, this net-density does not accurately reflect the number of tracks needed to lay

out the circuit, as shown in Figure 3.8.

For example, consider the situation in Figure 3.9(a). The net density between I
columns B and Y can be improved by exchanging columns A and Y or exchanging

columns A and Z. Both exchanges decrease the net density by one, and so they are

equivalent. Thus, one of these exchanges would be chosen at random. But both I
I
I
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I

I -

3 Figure 3.8. Net-Density Between Columns is a Poor Estimate of Track Requirements

3 exchanges are not equivalent in the physical layout. Figures 3.9(b) and 3.9(c) demon-

strate the result of accepting exchange A-Y and exchange A-Z, respectively. Clearly, the

U ordering in Figure 3.9(c) is better, since the physical layout would require only two

3 tracks instead of three. Thus, an algorithm based on the min-net-cut heuristic between

columns would choose the wrong exchange 50 percent of the time in this situation.

IA

3.2.3.1. Mm-net-cut across columns algorithm

I e In the following, an algorithm is presented for minimizing the net-density vertically

across a column [Gee89b], rather than between columns. This algorithm has been used

recursively to determine a signal ordering that results in smaller metal-metal-matrix lay-

I outs than can be obtained by minimizing the net-density between columns.

I First, represent each column in the layout by a vertex and each horizontal wire by a

i multi-terminal net. Divide the vertex set into three sets, A, B, and a set consisting of a
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U
A B Y Z
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(a)H_ _ _ I

YB 6
- Y A

(c)

Figure 3.9. Example of Min-Net-Cut Exchanges
(a) Initial Column Ordering

(b) Effect of Exchanging Columns A and Y
(c) Effect of Exchanging Columns A and Z

single vertex, v. A discussion on how to choose vc will be presented later. The initial

partitions can be chosen randomly.

Notice that the number of nets which contain vertex vc plus the number of nets m

which contain terminals in both sets A and B that do not contain vertex vc, is equal to the 3
net density of the column represented by vc. Since the number of nets incident to column I

3
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v. is independent of the partitioning, the net density across this column is minimized by

minimizing the number of nets with terminals in sets A and B. Thus, the partition which

minimizes the net-density across column vc is the same as the partition which minimizes

the net-density between the sets A and B. Thus, vertex v, and all the nets which are

incident to v, can be deleted, and then any of the well-known main-net-cut algorithms,

3 such as Kernighan and Lin can be applied to sets A and B [Kern70a].

3 In order to apply this algorithm to the layout problem, an appropriate vc must be

chosen. One heuristic method would be to try every vertex and choose the partition with

I the minimum net density. However. this approach would require O(n) more time than

3 the conventional min-net-cut algorithm between columns, and thus the total running time

of the algorithm increases to 0(n 3).

U Two heuristic algorithms, which do not increase the order of the algorithm, have

3 been used to select the cut vertex. First, choose k vertices with the smallest number of

nets incident to each vertex, where k is some predetermined constant. Since the objec-

I tive is to find a partition which minimizes the net-density across a column, if the algo-

3 rithm starts with a column with a smaller lower bound, the final result may be smaller.

The running time of this heuristic is still O(n2) since k is a fixed constant. Second,

I choose k vertices with the largest number of nets incident to each vertex. This heuristic

3 attempts to minimize the nets across the hardest columns first while the algorithm has

more leverage in optimizing the layout, since the lower bound on the number of tracks

I necessary to lay out the circuit is bounded by the maximum net density of all columns.

I
I
I
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The column ordering algorithm chosen in this thesis is a combination of three

heuristic algorithms, namely, the conventional min-net cut algorithm between columns

and the two previously discussed heuristic algorithms. All three algorithms are applied

to the same circuit and the best layout is chosen.

This algorithm has been applied to a number of circuits that were implemented in

the metal-metal-matrix layout methodology. The graph in Figure 3.10 compares the i
effectiveness of both the min-net heuristic and the max-net heuristic as a function of the

number of cut vertices chosen. This graph shows that the max-net heuristic obtains the

minimal number of rows using just one candidate cut-vertex for most circuits. For both I
heuristics, all circuits obtained the minimal number of rows by using at most four candi- 3

Circuits with Minimal Number of Rows I
vs

Candidate Cut-Vertices 3
1 I

C
c Ir 8-

u

4- i
2- . . . . . . . .4 ... . .... 6. .. . .

Number of Candidate Cut-Vertices I
-- Max-Net Heuristic E2M in-Net Heuristic

FFigure 3.10. Effectiveness of Heuristics

I
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date cut-vertices. Since the run-time increases with the number of candidate cut-vertices,

using the three best candidate cut vertices should be sufficient for most circuits.

I A comparison between the new approach using both heuristics with the conven-

tional min-net-cut approach between columns is summarized in Table 3.1. T 'e percent-

age values given in the table represent the improvement compared with the traditionalI
Table 3.1. A Comparison of Improved Min-Net-Cut Algorithm

with Conventional Min-Net-Cut for Metal-Metal-Matrix Layouts

CMOS Trans- Conventional Min-net Max-net
Algorithm Algorithm Algorithm

Circuit istors (Rows) (Rows) (Rows)

(74181) 258 86 75(18%) 75(18%)

BCD 96 44 48 (-9%) 45 (-2%)
(74145)CMP43 (4 140 65 68 (-5%) 60 (8%)(7485)

COUNT4 270 67 61(12%) 72 (-4%)
(74163)CSA

42 30 30 (0%) 32 (-7%)(74183)

ENCODE 104 53 53(0%) 44(17%)
(74147)

F. ADDER 66 31 28 (10%) 29 (6%)
(7482) ___ _ _ _ _ _ ____ ____PAIT
(7418 60 28 23 (18%) 23 (18%)

I MULT2 50 27 28 (-4%) 30(-11%)

Comb. 30 18 14 (22%) 14(22%)
Logic

Comb.
Logic 16 15 15(0%) 14(7%)

Finite 118 52 52 (0%) 52 (0%)
State

I
I
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approach. For both heuristics, the number of cut vertices was limited to the three most

promising candidates. From Table 3.1, all three methods are approximately equivalent

with respect to the total range of circuits tested. However, if both heuristics are used, 3
then better results are obtained in all circuits, except for two, which show no improve-

ment, and two, which were worse by only one row. By using both heuristics together, the

layout has been improved b) up to 22 percent with an average improvement of 9 percent

over the conventional min-net-cut algorithm. Since both heuristics have execution times

of O(n2), using both heuristics together results in a O(2n2) = O(n2) algorithm.

3.2.3.2. CMOS column ordering

The previous algorithm is sufficient for NMOS or dynamic circuits, where the spans

of the diffusion columns are equivalent to the spans of the signal columns. However, this

is not the case for static CMOS circuits; the span of the diffusion columns in either the

P-region or the N-region is only half the span of a signal column. Moreover, any diffu- 3
sion column in the P-region can be paired with any diffusion column in the N-region,

since all PMOS transistors are laid out above the NMOS transistors. Optimizing the P-

region separately from the N-region is unsatisfactory, since the signal order in each 3
region would be different in such cases, thus requiring some channel routing to intercon-

nect the two regions.

The algorithm presented in the previous section for optimizing the column order can I
be applied to CMOS circuits if the min-net-cut algorithm is modified to account for the 3
extra degree of freedom in CMOS circuits [Gee89c]. This freedom in CMOS circuits can

be modeled by representing the columns with three classes of vertices: signals (S), P- i
I
I
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diffusion (P), and N-diffusion (N). An initial partition can be improved by considering

five different exchanges, namely, three intra-class exchanges (S-S, P-P, N-N) and two

inter-class exchanges (S-PN, PN-S). A brief sketch of the modified min-net-cut algo-

rithm is shown in Figure 3.11. The run time of this algorithm is still 0(n 2) since a con-

stant amount of time is spent in Step 3 to determine the best exchange.

U As an example, Figure 3.13(a) represents the nets symbolically before the columns

3 are ordered for the compacted incidence matrix in Figures 3.12(a) and (b). Columns In

through 7n correspond to the N nodes which are the 7 columns in the compacted

I incidence matrix for the NMOS region and columns lp through 7p correspond to the P

3 nodes. After applying this procedure to Figure 3.13(a) the columns are reordered as

1. For all nodes compute the change in net density if only that node is
moved to the other side.

2. Choose 3n nodes (n signals, n P-diffusion, and n N-diffusion) which
have the largest change in net density as candidates to be exchanged.
Empirically, n = 2 or 3 produces good results.

3. From the candidate nodes chosen in Step 2, choose the exchange type3 which maximizes the gain:
exchange gain

type
S-S Da[u] + Db[v] - Cnet(u,v)
P-P Da[u] + Db[v] - Cnet(u,v)
N-N Da[u] + Db[v] - Cnet(u,v)
S-PN Da[u] + Db[v] + Db[w] - Cnet(u,v) - Cnet(u,w)
PN-S Da[u] + Da[w] + Db[vl - Cnet(u,v) - Cnet(w,v)

where Cnet is a correction term for nets which contain both nodes.
4. If the set is not empty then go to Step 2.
5. Choose the first k exchanges to be the exchange set, where

total gain = rnax(9gain[i]).

6. If total gain is positive then go to Step 1.

U Figure 3.11. CMOS Ordering Algorithm

U
I
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Figure 3.12. CMOS Compacted Incidence Matrix
(a) PMOS Region
(b) NMOS Region I

shown in Figure 3.13(b). A comparison of the Kernighan-Lin min-net-cut algorithm with

and without the CMOS extensions is shown in Table 3.2. From the table we see that the I
new algorithm has reduced the number of rows on average by 17 percent. 3
3.2.3.3. Constraint detection 3

The height of the subcircuit can be bounded from below by two quantities, namely,

the maximum net density over all columns and the length of the longest path in the 3
I
I
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Figure 3.13. Net Graph Before and After Column Ordering
(a) Before Column Ordering
(b) After Column Ordering
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I
Table 3.2. A Comparison of CMOS Ordering Algorithm
with K-L Min-Net-Cut for Metal-Metal-Matrix Layouts

CMOS Trans- K-L CMOS Percent i
Circuit i s Algorithm Algorithm

iruit Ist (Rows) (Rows) Improvement
ALU4

(74181) 258 112 86 (33%)

BCD 96 64 44 (31%)
(74145)

CMP4
(7485) 140 71 65 (8%)

COUNT4 270 98 67 (32%)
(74163)

CSA 42 33 30 (9%) i
(74183)

ENCODE 104 64 53 (17%) 3
(74147)

F. ADDER 36 31 24 (23%)
(7482)

PARITY(74180) 60 34 28 (18%)

MULT2 50 31 27 (13%)
Comb.
Comb. 30 18 18 (0%)
Comb.I

16 15 15 (0%)Logic
Finite 118 66 52 (21%)
State I III ___I I

corresponding vertical constraint graph. The vertical constraint graph is an acyclic

directed graph representing the vertical constraints between the horizontal nets. The

maximum net density is minimized by reordering the columns. The length of the longest

I
U
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path in the constraint graph can be reduced by removing vertical constraints in the path.

This can be achieved by adding additional columns to the layout.

I The algorithm to determine which minimal set of constraints to remove is based on

a breadth-first traversal of the vertical constraint graph [Gee89d]. The range of possible

heights versus number of constraints removed for each vertex is computed incrementally

I at each level from the information saved at its parents.

A lower bound on the height of the cell can be determined from the corresponding

constraint graph G(VV). The vertices in this graph represent source-drain nets and the

I edges represent constraints between these nets. The edges are given two attributes, a

weight equal to the number of transistors between the two corresponding nets and a

column number corresponding to its column in the compacted incidence matrix. Two

I additional vertices are added to this graph, namely, a source vertex and a sink vertex. As

3 their names imply, the source vertex is connected to each parentless vertex and the sink

vertex is connected to each childless vertex. The weight of these edges is zero. Figure

I 3.14, shows a compacted incidence matrix and its constraint graph. A lower bound on

the height of the cells is giver! by the heaviest path between the source and the sink ver-

tices, where the weight of a path is given by the sum of its edge and vertex weights. All

I vertices have weight one, except for the source and sink vertices which have weight zero.

For example, the minimum height for the incidence matrix in Figure 3.14 is 9. Inter-

column constraints can be removed by adding an additional column to the layout as

I shown in Figure 3.15. This corresponds to splitting a vertex into several vertices, as

shown in Figure 3.16, which reduces the height of this cell to 7. The problem is to deter-

I
I
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Figure 3.14. Compacted Incidence Matrix and its Constraint Graph
(a) Transistor Circuit
(b) Incidence Matrix

(c) Vertical Constraint Graph
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Figure 3.15. Horizontal Constraints From Net E in Figure 3.14 can be Removed
by Adding an Additional Column to the Layout

mine which source-drain net constraints to break that will require the fewest additional

I columns, while achieving the specified height objective.

I
source

3 0B B

33

I
sink

Figure 3.16. Effect of Removing the Vertical Constraints from Net E3 on the Constraint Graph
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This can be computed efficiently if the vertices in the constraint graph are ordered. 3
To determine the order, assign each vertex a level equal to its maximum distance from

the source vertex, where distance is measured in terms of the number of edges. The ver-

tices in the graph are then processed level by level starting with the vertices with the

lowest level. So for each vertex at level 1, the range of possible heights for vertex v

versus the number of constraints removed is computed. This can be computed efficiently

from the vertices at level 1-1. The minimum height of vertex v if n, constraints are

removed is I
minheight(v,col,n,) = min( min(minheight(u,col,ne-1)+wgt(v,u)),

jtnax (minheight(u,*,xu)+wgt(v,u)))) 3
where minheight(v,*,n) is the maximum value over all columns which are incident to 3
vertex v. Now the minimum height of the constraint graph is given by

minimum constraint graph height = minheight(sink,*,n,)

with a corresponding cell width equal to nc + Co columns, where Co is the width of the

cell without any constraints removed. The actual constraints to remove can easily be

determined by saving two arrays of values at each vertex, one representing the minimum 3
height of the vertex for rc constraints removed and the other stating whether or not the

constraint represented by the current vertex should be removed given that nc constraints I
are removed. 3

I
I
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Although the worst case behavior of this algorithm is O(2 n) where n is the number

of vertices, the running time is bounded by O(nw), where w is the maximum number of

3 transistors connected in parallel.

3 3.2.3.4. Track assignment

I Each incidence matrix defines two sets of nets. The first set is represented explicitly

by each row of the matrix and corresponds to interconnections between the sources and

I drains of different transistors. The second set is represented implicitly by the transistor

3 labeling in each column and corresponds to nets connecting the signal columns to the

gates of the transistors. These nets and their column ordering are now transformed into a

I symbolic layout. Certain constraints force the track assignments to follow a certain order

since the gate of a MOSFET must be assigned between the source and drain. A vertical

constraint graph for the NMOS portion of the circuit is generated from the column-

I compacted matrix in Figure 3.12 and is shown in Figure 3.17. Notice that NET 7 and 8

are at the same level. This reflects the fact that these nets represent series transistors and

that their order can be permuted. For this group of series transistors, an extra node is

3added in series, so that the length of the longest path is a lower bound on the number of

tracks required. In general, n-I nodes must be added in series for each group of n series

transistors.

I The symbolic layout is now generated one track at a time. All nets which have all

3their constraints satisfied are candidates to be assigned to the first track. However, not all

candidates are assigned with equal priority. The net priority is determined by its distance

I from the root node in the vertical constraint graph, since this distance represents the

I
3
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Figure 3.17. Vertical Constraint Graph II
minimum number of tracks still necessary to complete the layout. For nets with equal

priority, the nets with the left-most terminal is assigned first. When the current track is 3
full, a new track is allocated and the process is repeated until all nets have been assigned.

Applying the above procedure to the compacted incidence matrix in Figure 3.12 results

in a symbolic layout shown in Figure 3.18. I

3.3. Summary 3
This chapter has presented a symbolic representation for MOS circuits, namely, the

incidence matrix representation. In general, the incidence matrix is very sparse. To

achieve a compact layout, the sparsity of the incidence matrix is first reduced by merging 5
columns and the number of horizontal tracks is reduced by reordering the merged

columns. The column ordering algorithm minimizes the net-density across the columns,

I
I
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I
WEVA FDUB C
I IT++**+*+*+*+TI
I 111111 I PT I IIIII
I I I I T+++pT++++p I T Two layers electrically connected and form a 'T'
I I T++++++pIPTI I N NMOS transistor with gate signal to the right
I T+++pl IP++TP+PT n NMOS transistor with gate signal to the left
T+p I T+pT++++TTp I P PMOS transistor with gate signal to the right
I I T*+*TT*+TT- +TI p PMOS transistor with gate signal to the left
I I I I I I I I I + two layers cross but are not electrically connected
I I TT I T* * - +TT * +T I * two layers cross and are electrically connected
T+n I Tn I I T+NTNTNT I vertical metal (top layer) or diffusion
I Tn I I IN+NTI IIIII - horizontal metal (bottom layer)
I IN+TTTI 1 I IIIIII
I IIT+PN++++++++T
1 I IN .IN+++++++TI I
I IT++**+*+*+*+Tl

I Figure 3.18. Symbolic Layout

I which is a more accurate lower bound on'the number of tracks than the net-density

3 between columns. Thus, denser circuits are generated. The column ordering algorithm

optimizes both PMOS and NMOS transistor regions simultaneously to minimize the cell

Iarea. The compacted incidence matrix is then converted into a symbolic layout. This

3 symbolic layout can be transformed into the mask data necessary for fabrication using

the methods to be discussed in the next chapter.I
I
I
I
I
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CHAPTER 4. i

SYMBOLIC LAYOUT 3
I

4.1. Introduction 5
In VLSI circuit design, there are two main computer-aided tools available for

developing custom cells, namely, graphics layout and symbolic layout. In the graphics i
layout method, a designer must work with the geometric design rules. To assist the 3
designer, graphics editors, such as MAGIC [Oust84a, Tay184a], have incorporated plow-

ing (a form of compaction) and interactive design rule checking (DRC). However, dif- I
ferent topological instances of a circuit are still difficult and very time-consuming to gen- -
crate. The circuit is very technologically dependent, rendering the circuit obsolete with

advancing fabrication technology. I
The symbolic layout methodology, on the other hand, uses different symbols to 5

represent different geometric primitives. This simplifies the layout process by hiding the

complexity of the geometric constraints. This is advantageous to both the designer and i
the CAD tools, such as design rule checkers, circuit extractors, and logic verifiers, which 3
no longer need to work with geometric objects. An additional benefit from this level of

abstraction is that the symbolic layouts are process independent. A number of symbolic !

layout systems have been developed in the past for MOS cells, such as SLIC [Gibs78a], 3
STICKS [Wil78a], SLIM [Dunl80a], MULGA [West8la], SLS [Posl85a], SYMPLE

[Szab87a], and MGX [Tera87a]. Most of the above systems require a graphics I
I
3
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3 terminal/plotter to edit/display the symbolic layouts. In addition, the symbols and/or

wire segments are associated with specific layers.

I This chapter presents a symbolic layout system [Gee88a] for single-poly, double-

3 metal MOS technology. The symbolic layout system uses a variable grid-base approach

and lays out circuits using the M3 layout methodology. Unlike other symbolic layout

i systems, this system provides an additional level of abstraction. The layout symbols

represent simple geometric primitives. The actual mask layers used to construct these

primitives are determined automatically. This allows one symbolic layout to represent

i both M3 layout variations [Gee89a, Kang87a]. Section 4.2 begins with an overview of

3 the symbolic layout system. Next, the layout primitives used by the symbolic layout sys-

tem will be discussed as well as the techniques employed to minimize the area. Finally,

I this chapter concludes with a comparison of the layout area using this approach with the

3 standard cell approach.

4.2. Symbolic layout system overview

This symbolic layout system has been developed to lay out MOS circuits in the M3

i methodology.. Dense layouts for different MOS technologies can be produced by simply

5 specifying a new technology-file. A technology-file for a typical 2-micron process is

shown in Figure 4.1. The technology-file specifies the minimum layer-to-layer spacing,

I minimum layer widths, and other technologically specific features. Currently, mask data

3 for 3-micron single-tub technology and 2-micron twin-tub technology can be generated.

The M3 layout style has an orderly structure which easily maps into a variable 2-

dimensional grid. By restricting the symbolic layout elements to lie on grid points, the

I
I
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I
# Design Rules in tenths of Lambda.
# Lambda in centimicrons. 3
#
version "2.0 micron rules

# LAYER SPACINGS
# CC CD CS CM CM2 CP CNW CW CV
contact 20 20 20 20 0 20 0 0 40
diffusion 20 30 30 0 0 10 40 40 0
pdiffusion 20 30 30 0 0 10 40 40 0
metal 20 0 0 30 0 0 0 0 20
metal2 0 0 0 0 40 0 0 0 20
poly 20 10 10 0 0 20 0 0 20
nwell 0 40 40 0 0 0 30 30 0
pwell 0 40 40 0 0 0 30 30 0
via 40 0 0 20 20 20 0 0 20

# LAYER WIDTHS
width 20 30 30 20 30 20 110 110 20

# NAIL HEAD SIZES
intersect * 40 40 40 40 40 * * *

# layer numbers for extraction labeling 3
layemumbers 4 1 9 5 7 3 11 2 6

# overlap (diffusion overlap for trans) (poly overlap for trans)
overlap 20 20I

# lambda = 1 micron
lambda 10

# WELL REQUIREMENTS
wantnwell 1 # need NWELL
wantpwell 1 # need PWELL

# TIMBERWOLF scale factor I
timberwolf 5

Figure 4.1. Technology-File for 2-Micron CMOS Twin-Tub Process I
U
I
I
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symbolic layout can be stored efficiently as a 2-dimensional array within the computer.

In addition, the symbolic layout elements can be represented as ASCII-characters and

displayed on any ASCII terminal or line printer. Thus, the symbolic layout can be easily

manipulated by a human designer or other design automation tools. The grid spacing

used to place the layout symbols is neither fxed nor uniform. This allows layouts to

3 have a high packing density even though the design rules are different for different mask

layers. The circuit in Figure 4.2 was laid out using this symbolic layout system.

4.3. Layout symbols and symbol mapping

The system consists of a small set of symbolic layout elements, shown in Table 4. 1.

3 These symbols represent layer independent and orientation independent geometric primi-

tives. Each symbol is interpreted with respect to its adjacent symbols and its functional-

ity to determine the proper layers and the orientation of the symbols. For instance the

I symbol '-' represents a horizontal wire segment. In the M3 layout style, this wire seg-

tment can be metal, poly, or both. The neighboring symbols are inspected to classify the

wire segment based on length and functionality. For short wire segments interconnecting

Lie gates of transistors the wire will be laid out in poly provided that no extraneous

'ansistors are created. Otherwise, the wire will be laid out in metal and appropriate layer

changing contacts will be added where necessary.

U Internally, each layout symbol is converted into bit flags representing each layer.

Each layer is represented by 4 bits denoting all four directions (up, down, right, and left).

Thus, in this current implementation, 8 routing layers can be represented in one 32-bit

3 word, of which only 4 are used (diffusion, poly, metal 1, and metal 2). This

I
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Figure 4.2. Circuit Schematic, Symbolic Layout, and Mask Data

(a) Circuit Schematic
(b) Symbolic Layout

(Continued on next page)
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Figure 4.2 (Continued)
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Table 4.1. Layout Symbols

Symbol Geometric Primitive Symbol Geometric Primitive 3
*I

T rors L 1

I

p,P Pmos Transistors space No Geometry 3
I

representation allows the symbolic layout generator to simultaneously choose all the

layers between two adjacent symbols consistently by using bit-shift and bitwise-and I

operations. Each layout symbol is mapped into one general bit-flag representation, and 3
then, it is made consistent with its adjacent symbols in another pass. For instance the

symbol '-' is initially mapped into both poly and metal I going both right and left. After

the internal representation of the symbolic layout is consistent, the number of vias is 5
reduced by maximizing the use of metal I runners where possible.

I
I

I I I Ill I I l I
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3 4.4. Grid spacing

Each layout symbol is associated with a set of attributes which describe the relevant

I physical information for each symbol, such as, wire widths or transistor length and width.

3 This information, along with the design rules, and the contact orientation for multi-layer

transitions (diffusion to metal 1 to metal 2, or poly to metal 1 to metal 2) will determine

I the grid spacing. Of these factors, only the contact orientation can be varied by iSILVER

3 to minimize the width of its corresponding row or column.-

The algorithm to determine the proper orientation for each contact begins by elim-

inating all contacts which can overlap an adjacent symbol. The orientation for these con-

I tacts is already determined and will not impact the row or column spacing. Next, all the

rows with column prime contacts and all the columns with row prime contacts are

removed from consideration, as shown in Figure 4.3(a). A column (row) prime contact is

3 defined as any contact which is in a column (row) by itself. These contacts are oriented

to minimize the length of their respective rows or columns. This step is repeated until all

Iprime contacts have been eliminated. At this point, the row or column with the most

3 contacts is chosen, Figure 4.3(b). The orientation of each of these contacts is chosen to

minimize the length of the row or column, respectively. This row or column is then

eliminated from further consideration and the process is repeated until all contacts have

3 been assigned an orientation, Figure 4.3(c).

Unlike other symbolic layout systems which employ some form of compaction,

such as constraint-graph or critical path, super compaction, or zone refinement, the sym-

3bolic layout system produces dense layouts by varying the spacing between grid lines.

I
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I

x )( ) x --- XX-

x x x x I
x x x x x x

(a) (b) I
I
I

(c)

Figure 4.3. Progression of Contact Orientation Algorithm
(a) Prime Contact is Circled. First Row Contains a Column Prime Contact.

(b) The Second Row With the Most Contacts is Eliminated.
(c) Third and Fourth Rows Contain Column Prime Contacts. I

The minimum spacing between grid lines can easily be computed by inspecting the sym-

bols in adjacent rows or columns. For general layouts, this approach may produce lay- m
outs which are very area inefficient compared to any of the above compaction

approaches, since every layout element in a row or column must be moved together.

However, this is not the case for M3 layouts. The M3 layouts consists of grid-like struc- 3
tures, namely, signal columns and horizontal routing tracks. These structures are nearly

uniform in width, which is ideal for the variable grid approach. This approach is also

much faster than any of the above compaction schemes. An important feature of the 3
I
I
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variable grid approach is that cells can be generated with a specified signal pitch to sim-

plify routing or to allow it to be connected to other cells by abutment.

4.5. Results and comparisons

I For comparison, four circuits have been laid out in different layout styles. Table 4.2

3 below provides a layout comparison of PLA, Gate Matrix [Lope80a], the double-metal

version of Gate Matrix, and the M3 in 3-micron design rules. The PLAs were simply-

I folded and multiply-folded using PLEASURE [Hach82a] and laid out using PANDA

[Mah84a] for the single-metal PLAs and GENESIS [Cowa87a] for the double-metal

PLAs. Circuits 1 and 2 are combinational logic and Circuits 3 and 4 are finite state

I machines. Circuit 1 has 29 transistors in PLA implementation with two-level AND-OR-

3 gate design and 15 transistors in Gate Matrices and M3 with complex cell design. Circuit

2 has 30 transistors in PLA and 12 transistors in Gate Matrices and M3, respectively.

I Circuit 3 has 76 transistors in PLA and 61 transistors in Gate Matrix and M3, respec-

tively. Circuit 4 is the first example in Wing [Wing85a] which has 118 transistors. The

5Table 4.2. Layout Area for PLA, Gate Matrix, and M3

Circuit Single-metal Double-metal

PLA Gate Matrix PLA Gate Matrixt m3

_(__m2) (jn 2)  (LM2)  (11M 2) (rmn2)
1 10152 7680 17113 9480 8640
2 21648 8448 27475 9344 8567
3 123480 103488 218010 108192 102818
4 - 185856 195712 200322

t The double-metal version of gate matrix uses the top-level metal lines on top of
the poly gate lines.

I
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results in Table 4.2 show the smallest area of PLAs produced by the tools used. The

PLA area in Table 4.2 is the area of the core only. A comparison between a standard cell

approach and the M3 layout style is shown in Table 4.3. The area of the standard cells 3
consists only of the area of the cells plus the channel area for inter-cell wiring. In order

to make a fair comparison with standard cells, the transistor widths in the M3 layouts are

the same as the transistor widths in the standard cells. 3
The gate matrix layouts were hand-generated for circuits 1, 2, and 3. Ai initial sig- 3

nal order was determined by using a min-net-cut procedure. Then the nets were assigned

to tracks allowing series transistors to be permuted. Finally, additional improvements to 3
the gate matrix were sought by intelligently permuting the signal order. Circuit 4 is the 3
first example in Wing [Wing85a]. The double-metal gate matrix is the same as the single

metal gate matrix except that metal2 is connected on top of the poly lines to reduce the 3
parasitic resistance. However, it should be noted that this configuration suffers from the

large increase in the parasitic capacitance in the gate signal lines by as much as 60 per-

cent. This simple-minded approach to double-metal gate matrix layout demonstrates that 3
a much higher area-penalty is incurred if the extra metal layer is not used effectively.

Table 4.3. Layout Area for Standard Cells and M3  3
Circuit Standard Cell M3LM.2) qLMn2) I

1 32424 18056
2 30048 17902 3
3 276192 207267
4 213852 204612

I
I



1 71

3 Also, for large layouts, additional poly-metall-metal2 contacts must be added in the core

to achieve a similar reduction in the parasitic resistance as in the M3 layouts. However,

3 extra contacts are difficult if not impossible to add, in the congested areas of the gate

matrix without increasing the area further. The area figures in Table 4.2 for the double-

metal gate matrix reflect the overhead of adding only two rows of contacts at the top and

3 bottom of the corresponding single-metal gate matrix circuit.

5 From Table 4.2, one can see that the layout density of M3 is much higher than that

of PLA implementations. Although the layout area of M3 is sometimes larger than that

I of the single-metal gate matrix, its circuit speed is up to 45 percent faster. In general, the

I relative increase in circuit speed is higher for larger circuits which generally have longer

poly runners. In comparison, the double-metal version of the gate matrix layout takes a

I larger area than M3 for comparable circuit speed. It should be noted that for Circuit 4 the

1 double-metal gate matrix layout is about 3 percent smaller than the M3 layout since only

two contact rows are used between poly and metal2. However, if more contacts are

I inserted to reduce the parasitic resistance in the gate signal path comparable to that of M3

layout, the double-metal gate matrix layout area will become larger.

The cells used in the standard cell approach are from the CMOS3 CELL LIBRARY

I [Hein88a]. Although these cells have been designed using only a single layer of metal,

3 the availability of an additional layer will not reduce the size of simple cells such as

inverters, NAND, NOR, etc. The cells were placed using TimberWolf version 3.3

I [Sech86a] and interconnected using two layers of metal with YACR [Reed85a].

I
I
I
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Table 4.3 shows that the symbolic layout is usually smaller than the standard cell 3
implementation. However, the symbolic layout is not restricted to the cells available in

the standard cell library. The above circuits could have been implemented with complex I
gates, or switching network logic [Gee89a] could have been applied to reduce the

number of transistors. In addition, if these cells are to be used in an actual circuit, the

transistors in the symbolic layout would be optimized, which would reduce the size of I
many transistors, thus the size of the symbolic layouts would be even smaller.

All of the transistors in Taoie 4.2 were generated using minimum size transistors.

In many circuits the transistor widths are increased to reduce the delay or to drive multi- I
ple transistors. Table 3 compares the impact of increasing the widths of all transistors for 3
the M3 circuits in Table 4.2. From Table 4.4, we can see that doubling or quadrupling all

the transistors in these circuits results in only a modest increase in circuit size. The rea- 3
son for this behavior is that many transistors can be extended under the signal columns. 3

Table 4.4. The Impact of Different Transistor Sizes on Circuit Area

Relative Circuit Area I
Transistor SizeCircuit -.

xl x2 x4 xl0
1 1 1.014 1.133 1.720
2 1 1.016 1.101 1.610
3 1 1.000 1.132 1.864
4 1 1.019 1.076 1.517

3
I
I
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* 4.6. Summary

In this chapter, a symbolic cell generator for double-metal, single poly MOS tech-

I nology using the M3 layout methodology has been presented. The symbols used in this

3 symbolic layout system provide an additional level of abstraction over other symbolic

layout generators by letting the layout symbols represent geometric primitives not associ-

I ated with any specific layers or orientation. This gives the symbolic layout generator

3 greater leverage in optimizing the layout. Also, restricting the layouts to use the M3 lay-

out methodology enabled the use of simple, yet powerful algorithms for generating dense

I layouts.

3 By using logic design tools such as switching network logic [Gee89a] and the tech-

niques presented in Chapter 3 in conjunction with this symbolic layout system, physical

I layouts can be generated from truth tables for combinational logic or from transition

3 tables. for sequential logic. This implementation of the 74181 4-bit ALU with 258

transistors is shown in Figure 4.4 and required 205 seconds to compact the incidence

I matrix and to lay out.

I
N
I
I
I
I
I
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* CHAPTER 5.

3 iSITE: AUTOMATIC MODULE GENERATION SYSTEM

I
3 5.1. System overview

A schematic of the module generation system is shown in Figure 5.1. The input to

I the cell generation system is a transistor netlist. This can be expressed by a SPICE file or

3 by incidence matrices. This transistor netlist is partitioned into channel-connected

transistors. Channel-connected transistor groups correspond to conventional gates such

3 as NANDs and NORs, complex-gates, and pass-transistor gates. Although individual

I gates can be laid out separately as in the conventional standard cell approach, this cell

generator lays out larger blocks to obtain a higher packing density. Each channel-

I connected transistor group is considered as one indivisible unit and a collection of these

I groups is then merged together based on their connectivity to form cells of approximately

100-200 transistors. Although circuits do exist which have channel-connected transistor

I groups larger than 200 transistors, such as memory arrays, most random logic circuits

3 consist of small groups. Hence, the discussion is focused on determining good algo-

rithms to merge small groups together instead of splitting large groups. The reason that a

I channel-connected transistor gate is considered to be an indivisible unit for layout is to

3 avoid the possibility of adding high parasitic capacitance on an internal gate node from

intercell routing.

I

I
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Figure 5.1. iSITE System Overview 3
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A symbolic layout is then generated for each of the subcircuits using the methods

presented in Chapter 3. This symbolic layout is converted into the physical mask layers,

3 and the transistors along with the parasitic resistances and capacitances are extracted

using iCPEX. This transistor circuit description is converted into a gate-level description

and then optimized using iCOACH. The symbolic layout, along with the new transistor

3 sizes, is used to generate a new physical layout. These cells are then placed using Tim-

berWolf and interconnected using YACR.

5.2. Circuit specification

The input specification for the iSITE system can be an incidence matrix or SPICE

3 format. The SPICE format can be converted into an incidence matrix using the method

described in Chapter 3. iSITE allows nested subcircuit definitions and has 3 predefined

static CMOS gates, namely, INVERTER, XOR, and XNOR. The system also has 6

3 predefined static CMOS variable size input gates, which are n-input NAND, n-input

NOR, n-input AND, n-input OR, AOI and OAI gates. The transistor configuration for

these gates is shown in Figure 5.2. A larger library of gates can easily be added to the

3 iSITE system. For instance, the JK FLIP-FLOP in Figure 5.3 could be defined with the

following subcircuit definition:

.SUBCKT J K CLK Q JKFF
X1 K Q CLK 1 NAND3
X2 i QBAR CLK 2 NAND3
X3 CLK QBAR 2 QBAR Q A0122
X4 CLK Q I Q QBAR A0122
.ENDS

3 The user-defined and the predefined subcircuits in iSITE are much easier to maintain

I
I
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3 than the circuits in a standard cell environment because the circuits are generated as

needed and optimized automatically using iCOACH [Chen88a] (to be discussed later).

3 Thus, these definitions will remain valid across technology updates. Hence, a large

library of cells can be maintained without the disadvantages associated with a large stan-

dard cell library [Keut87aI.

3 5.3. Circuit grouping and partitioning

3 The packing density of the layouts generated using the cell generator presented in

Chapter 3 may decrease as the number of transistors becomes too large. This is partly

I due to the higher cost of intra-cell routing for larger cells. As the number of transistors

3 and signals increases, many of the transistors and the gate signals must be placed farther

apart, thus increasing the span of these nets. This makes it more difficult for several nets

IQ

I
I

I

I
I

CK

I Figure5.3. AKFLIP-FLOP
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to share a track, because nets with overlapping spans must be assigned to different tracks. 3
Two approaches can be used to minimize this problem. First, one can split the input sig-

nals, allowing the signal to have multiple entry points to the cell. This will reduce the 3
span of individual nets, which will increase the number of nets sharing a track. Second,

one can partition large circuits into several subcircuits which can be laid out efficiently

by the cell generator. In this thesis, the latter approach is adopted. Partitioning reduces 3
the problem size, which reduces the maximum memory requirements of the generator 3
and reduces the total running time of the cell generator.

Before the circuit is partitioned, the transistors are grouped into indivisible blocks, I
to avoid the possibility of adding high parasitic capacitance on an internal gate node from 3
intercell routing. Three different methodologies are used for grouping the transistors,

namely, two user specified methods and one automatic method. The first two grouping I
methods depend on the user specified hierarchy. The first grouping method forms groups 3
out of the transistors specified in the the lowest level of the hierarchy. These subcircuits

usually correspond to logic gates. The second method places all transistors in the top- I
most level of the hierarchy together. These blocks are generally large enough to be gen- 3
crated as separate cells. Finally, the last method treats all channel connected transistors

as indivisible blocks. I

Channel connected transistor blocks correspond to logic gates, complex gates, and 3
pass-transistor blocks. The channel connected transistor blocks are all the connected

subgraphs in G,(V,E). Graph G, is the same as the circuit graph, except that all voltage I
source nodes are split, so that each subcircuit is not connected through voltage source 3

I
I
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nodes. An example of channel connected transistor blocks and the corresponding chan-

nel connected graph is shown in Figure 5.4.

I The number of transistors in each channel-connected transistor block is generally

3 small for random logic circuits. Since the cell generator is most efficient at generating

3

I 1

I

I

i Figure 5.4. Channel-Connected Transistor Blocks

I
U
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medium sized cells, several channel-connected transistor blocks are merged into

medium-sized cells. Four algorithms have been developed to determine the transistor

grouping. 3
The first algorithm uses a top-down approach to determine the transistor grouping. 3

The set of channel-connected transistor blocks is recursively divided into two sets, such

that the number of nets with terminals in both sets is minimized, until the sets are small 3
enough. A min-net-cut heuristic "as been chosen for two reasons. First, minimizing the a
number of nets between both sets minimizes the inter-cell routing area, and second,

minimizing the inter-cell routing area tends to minimize the parasitic capacitance. I
Algorithm 2 attempts to partition the set of transistor blocks into as few cells as pos- 3

sible, such that all cells contain less than a user specified quantity. Initially, all cells are

empty. The set of transistor blocks is sorted by size in non-increasing order. Then, each U
block is assigned to the first cell which is large enough to hold the block. The running

time of this algorithm is Q(nlog n + n2) = 0(n 2).

The third and fourth algorithms balance the two criteria of minimizing inter-cell U
connections on the one hand and generating as few cells as possible on the other. In both 3
of these algorithms, the set of blocks that are candidates to be assigned to the current cell

are blocks which contain nets with terminals in the current cell. In the third algorithm, N
the largest block that will fit in the current cell is selected. If there are no blocks con- 3
nected to the current cell, then the largest free block that will fit is selected. This process

of selecting blocks is repeated until the current cell is full. Then a new cell is started, and I
the process is repeated until all blocks have been assigned. The fourth algorithm is the 3

I
I
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g same as Algorithm 3 except that instead of choosing the largest block, the block with the

most nets in common with the current cell is chosen.

5.4. Circuit extraction, recognition, and optimization

I After the circuit has been geometrically laid out, the circuit parameters are extracted

3 using iCPEX [Su87a]. The output from iCPEX is a flat SPICE description. This

representation of the circuit is not suitable as input to iCOACH [Chen88a] to perform cir-

3 cuit optimization, since iCOACH is a gate-level optimization program.

3 The transistor specification must first be grouped into gates, such as NANDs, NORs,

and AOI gates. The general problem of subeircuit recognition is equivalent to graph iso-

I morphism and is NP-complete. However, this problem is not intractable for a wide range

.3 of CMOS circuits. For the following discussion, assume that the circuit does not contain

any pass-transistor networks (this assumption will later be relaxed) and that the gates are

U composed of parallel or series connections.

3 Since this circuit is not composed of pass-transistor gates, a channel-connected

transistor decomposition such as the method discussed in Section 5.2 will partition the set

of zransistors into a set of gates. Each subcircuit can be recornized independently and is

3 composed of a small number of transistors, due to the electrical limitations of the devices

(in general, there are fewer than six serially connected transistors).

The subcircuits at this stage consist only of series or parallel connections and so can

3 be recognized efficiently using a super-transistor decomposition method [Acun89a]. In

the super-transistor decomposition, a set of parallel or series gates is replaced with a sin-

gle transistor. For example, the parallel PMOS transistors in Figure 5.5(a) are replaced

I
I
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with the super PMOS transistor a in Figure 5.5(b). Then the series NMOS transistors are

replaced with the super NMOS transistor a in Figure 5.5(c). This subcircuit can now be

easily classified as a super inverter. The subcircuit function is 3
F=a=ABC 3

or a three-input NAND gate. Of course for complex gates, this technique can be applied 3
iteratively, replacing combinations of super-transistors with a single super-transistor.

This method can recognize all NAND, NOR, INV, AOI, and OAI gates in time O(n 3), I

where n is the number of transistors in the current subcircuit. 3
The original assumption that the circuit does not contain any pass-transistor net-

works is too restrictive. Commonly used pass-transistor gates are the XOR and XNOR

I
C ] loI

(a) (b) (c)

Figure 5.5. Super-Transistor Decomposition

I
I
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Figure 5.6. XOR and XNOR Pass Transistor GatesU
gates shown in Figure 5.6. One problem with including pass-transistor gates in the cir-

U cuit is that the simple channel-connected decomposition of Section 5.1 will not separate

3the pass-transistors from the static gates, as shown by the circuit graph in Figure 5.7.

However, pass-transistors can be detected by using a technique that has been developed

i for fast-timing simulation [Over89a, Rao88a], as shown in Appendix A.

3 Another problem with the XOR and the XNOR gates is that they cannot be recog-

nized using the super-transistor decomposition method. However, the XOR and the

I XNOR gates are composed of three easily recognizable transistor pairs, namely, inverter,

3 transmission gate, and driver transistors. All transistor pairs can be recognized in time

O(n2), where n is the number of transistors. Thus, the time to find all XOR and XNOR

2+n2

gates is O(n2 + "") " O(n2).

I
I
U
U
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i 5.5. Results

The iSITE system has been used to lay out a 32-bit adder with carry-look-ahead.

U The SPICE description of this circuit is shown in Appendix B and is implemented using

3 1254 transistors. Table 5.1 compares the four partitioning strategies presented in Section

5.3. In this table the active area for each layout is calculated as the maximum row width

I multiplied by the sum of the maximum cell height in each row. As expected, the first

3 algorithm required the fewest tracks for intercell routing. The subcircuits varied greatly

in size making it more difficult to generate rows of cells with the same height. However,

U this was offset by the area saved from inter-cell routing and produced the densest layout.

3 The second algorithm, which ignores connectivity information, generated blocks

nearly equal in size. Although the layout generated by this algorithm required the smal-

I lest active area, it required the largest total cell area. This layout suffers on a global

3 level, requiring the largest area for intercell wiring, using almost three times as many

routing tracks as the previous algorithm.

The third and fourth algorithms are roughly equivalent. Algorithm 4, which placed

3 more emphasis on connectivity than Algorithm 3 generated a slightly denser layout. In

U Table 5.1. A Comparison of Partitioning Strategies

Algorithm Routing Active Area Total Area
_ _ Tracks (x10 6 mum 2 ) (x10 6 mum 2)

1 37 3.55 4.58
2 90 3.14 6.82
3 69 3.89 6.47
4 59 3.73 5.96

I
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this example, the intercell routing area was the dominant factor to the cell area. TheI

number of routing tracks varied by a factor of three, while the active area varied only by

18 percent. I

I

I
I

I

I
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* CHAPTER 6.

3 CONCLUSIONS AND FUTURE RESEARCH

U
3 6.1. Conclusions

This thesis has presented a double-metal CMOS circuit synthesis tool. The iSITE

U system frees the designers from the tedious low-level aspects of design. The iSITE sys-

tem manages the geometric details of layout design, so that the engineer can concentrate

his or her efforts on circuit design or logic design. The iSITE system can easily generate

I layouts of complex transistor topologies, which previously could only be used in a full-

custom design approach. Subcircuits are laid out dynamically as needed; thus designs

can be generated in the latest technology available or in several different MOS technolo-

I gies. The iSITE system has a built-in cell library composed of several classes of simple

and complex logic gates. Additional subcircuits can be easily defined and maintained

since only the transistor connectivity is needed. Unlike standard cell libraries, this

I library of subcircuits will not become obsolete with advances in technology.

The iSITE system also allows nested subcircuit definitions, where circuits can be

defined in a hierarchal and structured fashion. This facilitates using subcircuits from

other projects, since the electrical nodes visible to other subcircuits can be .;asily con-

3 trolled. Thus, using these circuits requires knowledge only of its interfacing require-

ments.

I
I
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The iSITE system first groups transistors together into indivisible units. These units 3
are derived from a user specified hierarchy or from channel-connected decomposition.

These indivisible units are then merged together to form larger cells for layout. The cells I
are represented by incidence matrices. The incidence matrix representation is not unique

and the resulting layout is highly dependent on the incidence matrix ordering. In this

thesis the incidencc matrix is reordered to have the minimum total 1-1 distance. The 3
problem of determining the matrix with the minimum total 1-1 distance is NP-complete,

so a heuristic approach is employed. A symbolic layout of the circuit is then generated

from the compacted incidence matrix. The physical mask data can then be generated I
from the symbolic layout along with the design rules for the fabrication process. The

parasitic circuit parameters are then extracted from the layout using iCPEX. This

transistor-level specification of the circuit is then converted into a gate-level representa- -
tion for circuit optimization.

Subcircuit recognition is not only an important tool that is used to simplify circuit

optimization, but can also be used to simplify circuit verification. For instance, this I
implementation of the 74181 4-bit ALU requires 258 transistors, which the subcircuit 3
recognition program reduced to 31 simple and complex logic gates. For larger circuits,

the logic gates should be grouped into larger functional blocks, such as flip-flops, regis- I
ters, multiplexors, etc. 3

The new transistor sizes from circuit optimization along with the symbolic layout

are used to generate new mask data. The cells are then placed using TimberWolf and U
interconnected using a channel router (YACR).

I
I
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6.2. Future research

The incidence matrix compaction process operates on the columns first and then the

I rows, by recursively applying a min-net-cut algorithm to order both the rows and the

3 columns. However, when the columns are merged together, additional constraints are

imposed on the rows which may reduce the number of rows that can be merged together.

I Since the row and column ordering is determined by recursively partitioning the rows

3 (columns), a complete ordering of the rows (columns) does not need to be determined

before the columns (rows) are ordered. For instance, the min-net-cut algorithm could be

I applied alternately to the rows and columns. In general, reordering the rows tends to

3 reduce the width of the cell and reordering the columns tends to reduce the height of the

cell. Thus, better control of the final height or width of the cell can be obtained by judi-

I ciously choosing the order of the row and column optimization steps. A topic for future

3 research would be to determine a better sequence of row and column optimization steps

based on the aspect ratio, height, or width of the cell.

I Three-and four-layer metal technology is currently being used in gate array designs.

3 The symbolic layout generator should be extended to use additional layers automatically

to reduce the cell area or to reduce parasitic resistances and capacitances. The symbolic

layout generator should have the ability to stretch layouts to a specified height or width.

3 For these constrained layouts, the multi-layer contacts and transistors should be oriented

to achieve the specified height or width.

Currently all gate signals enter from the top or bottom of the cell. Thus, area is

wasted in routing a local signal to the edge of the cell. The packing density of M3

I
I
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circuits could be further improved by folding the local signals. In addition, higher pack-

ing densities can be achieved by allowing inputs and outputs on all four sides of the cell.

Circuits, such as bit-slice architectures and systolic arrays can easily take advantage of

four-sided input/output by using one direction for control signals and the other direction

for data. This generalization can easily be incorporated into the iSITE system without

modification to the column ordering algorithm. These new nets can be represented in the

column ordering algorithm, by connecting all the nets that enter/exit on the left side of

the cell to the left pseudo node and connecting all nets that enter/exit on the right side of

the cell to the right pseudo node. The column ordering algorithm is now applied to these

new nets in conjunction with the nets derived from the incidence matrix.

Although this thesis has shown that laying out the transistors in alternate NMOS and

PMOS transistor rows is undesirable, grouping the transistors into three or four regions 1
can be advantageous. By using three or more regions, many signals can be folded

together to reduce the layout area. An algorithm should be developed to determine the

impact of adding an additional group to the layout. I
The input to the iSITE system allows the user to specify the circuit hierarchically.

However, iSITE flattens this hierarchy before generating the layout. The system should

recognize common subcircuits from a user specified hierarchy or automatically from a I
flat circuit description and generate one layout for each common subcircuit that will be

instantiated several times. This can significantly reduce the memory requirements and

computation time necessary to generate large circuits. I
I
I
I
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Finally, the iSITE system can lay out arbitrary transistor topologies. However, the

optimization program is limited to logic gates. This program should be extended to han-

I dle arbitrary transistor configurations since a significant reduction in circuit area can

result by applying advanced transistor-level minimization techniques.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
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APPENDIX A.

PASS TRANSISTOR DETECTION

I
The following algorithm from iDSIM [Over89a] will detect pass transistors in chan-

nel connected transistor groups. I
PASSDETECT(O) [ I

for (each SiELQ))(

/* detect CMOS pass transistors */ 3
for (each Tj, TkELSiSTTYPE(Tj) = n-type and TYPE(Tk) = p-type) 3

if (Tj and Tk are connected in parallel) 

MTYPE(Tk)GETSPASS;

if (NTYPE(SOURCE(Tj)) INPUT)

NTYPE(SOURCE(Tj))GETSPASSOUT; I
if (NTYPE(DRAIN(Tj)) * INPUT)

NTYPE(DRAIN(Tj))GETSPASSOUT;

/* flag NMOS load output nodes */ I
for (each TjELSiSTMTYPE(Tj) = LOAD) 3

NTYPE(GATE(Tj))GETSDRIVEN;

/* flag CMOS gate output nodes */ I
I
I
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for (each NjELSiSTNj has a n-type, DRIVER transistor and

a p-type DRIVER transistor adjacent)

ITP(jGESRVN
I /* check for obvious pass transistors ~

3 for (each TjELSiSTMTYPE(Tj) = DRIVER)

if (TYPE(Tj) = n-type) (

I if (SOURCE(T) = VDD)

3 NTYPE(DRAIN(Tj))GETSPASSOUT;

NMPE(Tj)GETSPASS;

3 else if (DRAIN(Tj) = VDD)(

NTYPE(SOURCE(Tj))GETSPASS-OUT;

I MTYPE(Tj)GETSPASS;

I else ( /* p-type *

3 if (SOURCE(Tj) = GND){

NTYPE(DRAIN(Tj))GETSPASS_OUT;

3 MTYPE(Tj)GETSPASS;

else if (DRAIN(Tj) = GND)(

3 NTYPE(SOURCE(Tj))GETSPASS-OUT;
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MTYPE(Tj) ETSPASS; 1

)
) I

/* check for path between DRIVEN nodes */

if (Si has more than one DRIVEN node) (

for (each DRIVER transistor Tj in a path between 3
DRIVEN nodes) 5
MTYPE(Tj)GETSPASS;

for (each INTERNAL node Nj in a path between DRIVEN nodes) i

NTYPE(Nj)GETSPASSOUT;

I

if (Si has at least one PASSOUT node) { 3
/* check for paths to GNDand VDD from PASSOUT nodes */

PASSCHECK(Si, GND, n-type);

PASSCHECK(Si, VDD, p-type); 3
, I

for (each DRIVER transistor Tj in a path between DRIVEN and

PASS-OUT nodes) 3
MTYPE(Tj)GETSPASS;

for (each INTERNAL node Nj in a path between DRIVEN and

PASSOUT nodes) 3
NTYPE(Nj)GETSPASSOUT;

II
I
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I

I PASSCHECK( Si, source, type) (

1 /* check for paths from the source to PASSOUT nodes */

for (each path between source and each PASSOUT node in Si)

Iif (each node in the path is INTERNAL and each transistor is a

I type DRIVER transistor) (

for (each transistor Tj in the path)

I MTYPE(Tj)GETSPASS;

S for (each node Nj in the path)

NTYPE(Nj)GETSPASSOUT;1
/* check for paths between PASSOUT nodes */

for (each path between PASSOUT nodes in Si)

3if (each node in the path is INTERNAL and each transistor is a

type DRIVER transistor) j

for (each transistor Tj in the path)

5 MTYPE(Tj)GETSPASS;

for (each node Nj in the path)

NTYPE(Nj)GETSPASSOUT;I
I
I
I
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APPENDIX B.g

32-BIT CARRY-LOOK-AHEAD ADDER

The following SPICE description implements the 32-bit carry-look-ahead adder

using 1254 transistors (Chapter 5).3

xbOO AO BO CIN PO GO SO bitadd321

xbOl Al B1 CO P1 GI Si1 bitadd32

xbO2 A2 B2 Cl P2 G2 52 bitadd32I

xbO3 A3 B3 C2 P3 G3 S3 bitadd32

xbO4 A4 B4 C3 P4 G4 S4 bitadd32

xbO5 AS B5 C4 P5 G5 S5 bitadd32U

xbO6 A6 B6 CS P6 G6 S6 bitadd32

xbO7 A7 B7 C6 P7 G7 57 bitadd32

xbO8 A8 B8 C7 P8 G8 S8 bitadd32

xbO9 A9 B9 C8 P9 G9 S9 bitadd32

xblO MlO BIO C9 PIO 010 SlO bitadd32

xbll All B11 CIOPII Gil S11 bitadd32

xbl2 A12 B12 CH. P12 G12 S12bitadd32

xbl3 A13 B13 C12 P13 G13 S13 bitadd32

xbi4 A14 Bi4 C13 P14 G14 Si4 bitadd32U

xblS A15 Bi5 C14 P15 G15 Si5 bitadd323
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3 xbl6 A16 B16 C15 P16 G16 S16 bitadd32

xbl7 A17 B17 C16 P17 G17 S17 bitadd32

I xbl8 A18 B18 C17 P18 G18 S18 bitadd32

xbl9 A19 B19 C18 P19 G19 S19 bitadd32

xb20 A20 B20 C19 P20 G20 S20 bitadd32

3 xb2l A21 B21 C20 P21 G21 S21 bitadd32

xb22 A22 B22 C21 P22 G22 S22 bitadd32

xb23 A23 B23 C22 P23 G23 S23 bitadd32

I xb24 A24 B24 C23 P24 G24 S24 bitadd32

xb25 A25 B25 C24 P25 G25 S25 bitadd32

xb26 A26 B26 C25 P26 G26 S26 bitadd32

I xb27 A27 B27 C26 P27 G27 S27 bitadd32

3 xb28 A28 B28 C27 P28 G28 S28 bitadd32

xb29 A29 B29 C28 P29 G29 S29 bitadd32

5xb30 A30 B30 C29 P30 G30 S30 bitadd32

xb3l A31 B31 C30 P31 G31 S31 bitadd32

x01 CIN GO P0 G1 P1 G2 P2 G3 P3 CO Cl C2 GOP1 POPI bcla

I x02 C3 G4 P4 G5 P5 G6 P6 G7 P7 C4 C5 C6 G1P1 PIP1 bcla

x03 C7 G8 P8 G9 P9 G 10 P10 G11 PI1 C8 C9 CIO G2P1 P2P1 bcla

x04 Cll G12 P12 G13 P13 G14 P14 G15 P15 C12 C13 C14 G3P1 P3P1 bcla

Ix05 C15 G16 P16 G17 P17 G18 P18 G19 P19 C16 C17 C18 G4P1 P4P1 bcla

3x06 C19 G20 P20 G21 P21 G22 P22 G23 P23 C20 C21 C22 G5P1 P5P1 bcla

x07 C23 G24 P24 G25 P25 G26 P26 G27 P27 C24 C25 C26 G6P1 P6Pl bclaI
I
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x08 C27 G28 P28 G29 P29 G30 P30 G31 P31 C28 C29 C30 G7P1 P7P1 bcla 3
x09 CIN GO1 P01 Gll P11 G21 P21 G31 P31 C3 C7 Cll GOP2 POP2 bcla

xlO C15 G41 P41 G51 P51 G61 P61 G71 P71 C19 C23 C27 G1P2 P1P2 bcla I
x 1I POP2 CIN GOP2 C 15 aoi2l 3
x12 CIN POP2 PIP2 PIP2 GOP2 GIP2 C31 aoi321

i
* combine bit for 32-bit alu -> bitadd32(A,B,C,P,G,S)

xl AB Pxor I
x2 A B G and2 3
x3 C P S xor

* carry look ahead

x Icin p0 gO cO aoi2l 3
x2 cin p0 pl gO pl gl cl aoi321 3
x3 cin pO pl p2 gO pl p2 gl p2 g2 c2 aoi4321

x4 p3 p2 pl gO p3 p2 gl p3 g2 gOpl aoi432 I
x5 p3 p2 pp0 pop I and4

I
I
I
I
I
I
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3 APPENDIX C.

5 AN NP-COMPLETE PROBLEM - MINIMUM TOTAL 1-1 DISTANCE

I
In this Appendix, it will be shown that finding a permutation of the rows of an

incidence matrix with a minimum total 1-1 distance is NP-complete. To prove the NP-

5 completeness of this problem it is sufficient to show that the following subproblem is

NP-complete.

Minimum Total 1-1 Distance Decision

Given an incidence matrix A, and a positive integer Kin, determine

if there exists a row permutation matrix P such that

total 1-1 distance (PA.) S Kn.

To prove that the minimum total 1-1 distance decision problem is NP-complete, it

will be shown that the minimum total 1-1 distance is in the class NP. Then a polynomial

transformation of the well-known NP-complete problem, namely, the optimal linear

arrangement problem [Gare79a], to the minimum total 1-1 distance problem will be con-

structed.

I The optimal linear arrangement problem can be stated as:

5Optimal Linear Arrangement Decision

3Given a graph G(V,E) and a positive integer K., determine

if there exists a bijection f:V-+,( 1, ... , n), where I VI = n, such thati
I
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(v,..eEI f(vi)-f(v) 1 :- Ko. 3
The minimum total 1-1 distance problem is in class NP, since a nondeterministic

algorithm can guess a permutation matrix PO and compute the total 1-1 distance of PoAa

in polynomial time using the method described in Section 2. U
To transform graph G into an incidence matrix, let each edge dk = (vi,vj) £ E define I

a column vector Ck = ei + 8j, where 8,, is a standard basis vector of field Fn. So, etl =

(1,0,..., 0), et2 = (0,1,..., 0), etn = (0,0,..., 1). Construct an n x m matrix (IEI = m) A =

[ 1 2 "... dm]. The matrix A is an incidence matrix since each column contains exactly 3
two Is.

Now the validity of the above transformation will be proved by showing the

equivalence between the following two statements: 5
(1) there is a bijection f:V-4( 1, ... , n) such that vvEI f(vi)-f(vj) I < K,, and

(2) there is a row permutation matrix P such that the total 1-1 distance (PA.) < Km.

Proof 1 -+ 2:

etg(l)

Let the row permutation matrix P e . .? , where g(x) = f(vx). Then the matrix PAa is
etg(n

given by

P et(ilA et5 (l)a2 ... etg(I) m]PA, . ." . ...

Iets~~l .. el~n3
Cosierclun kwih s nth ihan jh nris.Ntie ha lgx~kisth xhenryo
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3 ck, so the 1-1 distance of column ck is

SI g(i) - g(j)I = I f(v) - f(vj) I.

I But the cost of the corresponding edge dk is I f(vi) - f(vj) I. Therefore the

Stotal 1-1 distance (PA.) , v I f(vi)-f(vj) I K0.O

I Proof of 2 -- 1

Let the n x n row permutation matrix P = , . Then for each Ox there exists one e

such that (Ox" e) = 1, since P is a row permutation matrix. Define the function g(x) = { y

3 I (Ox " e) = 1). In other words, g is a mapping of the rows of Aa to the rows of PAa. So

3 for each column k with Is in the i h and jh entries, the permuted column Pak has Is in

row g(i) and row go). The 1-1 distance of Pak is I g(i) - go) I. Now define the function

If(v) = g(x). Then the cost of edge dk = (Vi, Vj) is

1 I f(vo - f(vj) I = I g(i) - go) I = 1-1 distance(Pek.

I But, this is true for all k, so

(v,.vjE I f(vi-f(vi) I = total 1-1 distance (PA.) < Km.O

1
I
3
I
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APPENDIX D. 3

iSITE USER'S MANUAL 3
I

D.I. Introduction 3
The iSITE system automatically generates MOS circuits in the metal-metal matrix

(M3) layout style. iSITE is written in C and runs under the UNIX operating system. The 1
iSITE system consists of a suite of programs, each performing a specific layout task. The 3
circuits are specified in SPICE format, with several pre-defined built-in logic gates. This

transistor description is partitioned into channel-connected components. Several of these I
components are then merged together to form larger cells. Each of these cells is then 5
converted into a symbolic layout. The symbolic layout can then be converted into either

M 3 variation. After the mask layers for all the cells have been generated, the cells are I
placed and routed using TimberWolfSC [Sech86a] and YACR [Reed85a]. The circuit 3
parameters can then be extracted using iCPEX [Su87a]. This transistor description is

then converted into a gate description for circuit optimization using iCOACH [Chen88a]. I
The new transistor sizes along with the symbolic layout can then be used to generate a 3
new physical layout.

This appendix is organized as follows. Section D.2 begins with an overview of the I

iSITE circuit synthesis process. Sections D.2.1 through D.2.6 describe each of the iSITE 3
programs in detail. In this description, "[" and "]" represent optional arguments, while

"I" between arguments represents a choice of several arguments. Section D.2.1

I
I



U
5 105

3 describes using the iSPICE2AA program to convert circuits represented in SPICE format

into compacted incidence matrices. A symbolic layout can then be generated directly

I from these incidence matrices with iLAYOUT, or the height of the matrix can be

1 adjusted with the iPREFOLD program in Section D.2.2. iPREFOLD analyzes the

incidence matrix and removes vertical constraints by adding additional columns to the

I layout. The next section presents iLAYOUT, a program to generate a symbolic layout

3from compacted incidence matrices. First the command line arguments are described,

followed by a description of the input format. In Section D.2.4, the symbolic layout is

I converted into the physical mask layers by iSILVER. Section D.2.5 presents iD2GATE

3 for converting a transistor-level description into a gate-level description. In the iSITE

system, iD2GATE is used to convert the output of iCPEX, into a form suitable for circuit

Ioptimization by iCOACH. Finally, Section D.2.6 concludes with iUPDTRAN, a pro-

3 gram which updates the transistor sizes in the symbolic layout with the values obtained

from iCOACH.

D.2. Circuit synthesis with iSITE

I The following steps provide a framework for generating M3 layouts with the iSITE

5 system:

3 1. represent circuit in SPICE format,

2. use iSPICE2AA to convert SPICE into compacted incidence matrices,

I
I
I
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3. use iPREFOLD to perform prefolding analysis (optional), g
4. use iLAYOUT to convert compacted incidence matrices into symbolic lay-

outs,

5. generate physical layout with iSILVER,

6. use iCPEX to extract circuit parameters,

7. use iD2GATE to convert transistor-level description into a gate-level descrip-

tion, a
8. use iCOACH to optimize transistor sizes, I

9. update the transistor sizes and generate new layouts, 3
10. place cells using TimberWolfSC, 3
11. interconnect cells using YACR. 3

D.2.1. Generating compacted incidence matrices (iSPICE2AA) 3
The program iSPICE2AA converts a SPICE description of a circuit into a set of

compacted incidence matrices. iSPICE2AA accepts a complete SPICE description of a

circuit, including nested subcircuit definitions. However, the circuit is flattened inter- 3
nally. iSPICE2AA has several built-in logic gates, namely, INV, XOR, XNOR, NANDn,

NORn, ANDn, ORn, AOIn In 2 ... nk, and OAInIn 2 ... nk , where n and nk represent

the number of inputs. The format of the built-in logic gates is 5
U
U
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3 Xname inputs output "logic gate."

For example, the logic function,

F = abc+de+f+ghi,

can be implemented with the following AOI gate,

3 Xl a b c d e f g h i F AO3213.

3 IiSPICE2AA uses only the transistor connectivity to generate incidence matrices. In

other words, the width and length information on transistor cards is ignored. Also, all

3 resistors are treated as ideal wires and all capacitors are ignored. In addition, all nonzero

3dc voltage sources are treated as Vad. iSPICE2AA accepts the following options.

SYNOPSIS

3 iSPICE2AA [-l2AHOefmv] [-g[n]] [-M[nip]N] [-o outfile] [-p prefix] [-s size] file

I The options to the iSPICE2AA program are interpreted in the following manner.

Column and Row Assignment Options

| -1

This option forces one column to be filled before starting the next column.

-2 -

3 This option sorts all transistors according to their drain nodes and assigns each

transistor to the first available column.

I
I
I
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-o
This option will allow only series transistors to be allocated to the same column. I

-MnN

This option will allow at most N NMOS transistors to be merged together in a sin- 3
gle column.

This option will allow at most N PMOS transistors to be merged together in a sin-

gle column. I

-v I
This option will force Vdd and V,, to be the first and last rows in the incidence

matrix, respectively. I
Grouping Options I
-g0

This option will group all transistors into one indivisible group. The -s option is

ignored. 5

This option will divide the circuit into channel-connected groups.

I
I
I
I
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The indivisible transistor groups are defined by the first-level subcircuit

i definition.

3 The transistors are grouped according to the bottommost level of subcircuits.

This grouping strategy generally groups the transistors by the user specified logic

I gates.

3 Packing Options

1 P0

This option specifies that the groups should not be merged together.

i -P1

The criterion for merging groups is based solely on size. Since transistor connec-

3 tivity is ignored, the merged groups are nearly equal in size. This method pro-

duces the fewest number of groups.

1 "P2
This packing method merges groups together by size and the number of nets in

i common with other groups. The group with the most nets is chosen as the seed.

Then, only groups connected to this set are chosen. When the current merged

group is large enough, a new block is started.I
I
I
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This packing method is similar to -P2, except that the largest block is chosen as

the seed.

-P4 1
This option is reserved for future expansion.

-P,_5 I
This packing method ignores the size of the groups. The set of groups are parti-

tioned recursively until the set is small enough, using a min-net-cut heuristic. 3
This method generally produces cells which require the least area for inter-cell

routing.

s N
-sNU

The indivisible groups are merged together to form groups with at most N transis- I
tors. Groups containing more than N transistors are not split.

M'scellaneous Options

This options prints an expanded help list.

The specified.file describes the transistor connectivity in SPICE format.

I
I
I
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3 D.2.2. Prefolding analysis (iPREFOLD)

The height of the symbolic layout can be controlled by merging fewer columns

together, since merging columns impose additional constraints. The height of the sym-

3 bolic layout is bounded from below by two quantities, namely, the maximum net-density

and the length of the longest path in the vertical constraint graph. iPREFOLD takes a

I compacted incidence matrix as input and produces a list of constraints to break by adding

3 additional columns to the layout. iPREFOLD accepts a single optional argument.

SYNOPSIS

I iPREFOLD [file]

3 Options

* file

The specified file is used as input.I
D.2.3. Symbolic layout (iLAYOUT)

I iLAYOUT produces a symbolic layout of a compacted incidence matrix, which can

3 be obtained from a SPICE description by using the iSPICE2AA program. The columns

in the symbolic layout (each column in the matrix and each implicit signal represent a

column in the symbolic layout) are ordered by a modified min-net-cut algorithm which

3 minimizes the net-density across columns, as opposed to between columns. The algo-

rithm also considers the interaction between the PMOS and NMOS regions in CMOS cir-

Ucuits. After the columns are ordered, the nets are assigned to tracks using a left-edge first

3 algorithm.

I
I
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The format of the input file, with keywords in bold, is as follows: 3
[group integer]

[size integer] I
[global

[string] ... [string]

I I
[longabbr] 1
[order

[[PMOS column #][, NMOS column #] I [signal]] ...

' I
[pplane I nplane

header 3
[signal] ...

Amatrix

[incidence matrix] 3

[label

[signal fullname] 3
I I
[end] 0

I
Lines beginning with a "#" are ignored. The signal names must be one character long

I
I
I
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3 unless the command Iongabbr is used, in which case all signal names must be delimited

by a comma.

The iLAYOUT program accepts the following command line options.

3 SYNOPSIS

iLAYOUT [-d[m][level]] [-beglmOsSTv] [-hn] [-tnl [file]

I Options

S-b
3 This option will try several heuristics and choose the best layout.

3 -dlevel

Set the general debugging level.I
-dmlevel

I Set the debugging level for the min-net-cut routines.

* -e

3 This option will print the estimated height of the symbolic layout in rows.

3 group

Generate the symbolic layout for the specified group. The default is to generate a

I layout for the first group only.

I -H
3 Print an expanded help list.

3
I
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-hO

Use mnn-net-cut bisection between columns.

-hi U
Use mm-net-cut between columns. 3

-h2 3
Use mn-net-cut bisection across all columns.

-h_

Use mn-net-cut across all columns.

-h4 U
Use min-net-cut bisection across the k columns with the fewest nets. 3

-h5 3
Use min-net-cut across the k columns with the fewest nets.

-h6 Use min-net-cut bisection across the k columns with the most nets.

-h7£

Use min-net-cut across the k columns with the most nets. 3

Assign nets to tracks using a left-edge first algorithm.

I
I



U
1 115

3_m
Do not mergc !ts in the layout.I _

-Mn

I Set the maximum number of candidate to n for min-net-cut heuristics 4 and 5.

|-0
Perform local column optimization.

I -si

Split internal nets.3
-sc

3 Split constraint nets.

1 -2
Split multi-terminal nets into two terminal nets.

* -Sn

Set the min-net-cut set size to n.I
-T

3 Generate table of transistor sizes and locations.

5 D.2.4. Physical layout (iSILVER)

The symbolic layout generated by iLAYOUT can be converted into a metal-metal

matrix layout (M3 ). Both variations of the M3 style can be generated from the sameI
I
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symbolic representation. The input format for iSILVER is as follows. 3
[global

[signal] ... I
[longabbr]

nrows rows ncols columns prows rows pcols columns

[layout 3
symbolic layout 3

]

[size 3
[(x-coor y-coor width length)

]

[label 1
[signal fullname]

]

[xylabel 3
type name x-coor y-coor layer 3
I

[end] 0 3

SYNOPSIS 5
iSILVER [-d[level]] [-l2abcEeklsTtv] [-r design.rules] [-o output] [file]

3
I
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3 iSILVER accepts the following command line options.

Design Rule Options

-a

-a Use the ATT (3 micron, pwell) design rules.

I Use the VTI (2 micron, dual well) design rules.

3 -r file

Use the design rules in the specified file.

UExtraction Options

I -C

Add contacts to signal lines for extraction.

| E

Use iCPEX CIF point extension commands to label nodes and signals for extrac-

3 Set all options applicable for extraction by iCPEX.

It
Label the transistors.

I
I
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Layout Options 3
-_1

Generate the physical layout in style 1 (lower metal layer is horizontal).

-2

Generate the physical layout in style 2 (upper metal layer is horizontal). I

-b U
Label signal columns at the bottom of the signal (smallest y-coordinate). 3

-k 3
Represent the physical layout in KIC format (default is CIF).

-lI

Do not include the cell library in the physical layout. I
TimberWolf Options 3
-s 1

Save cell statistics.

-T

Generate a TimberWolf .cel file. 3
-Ta 5

Append to the TimberWolf .cel file when writing. 3
I
3
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T#val

Use val as the cell number in the TimberWolf .cel file.

:Ug

I Ignore all local signals. The TimberWolf .cel file will only contain entries for the

3global signals.

Use the specified.file as the TimberWolf .cel file.

IMiscellaneous Options

_devel

Set the general debugging level.

* -H

Print an expanded help list.I__
-o file

IUse the specifiedfile for the physical layout.

D.2.S. Gate recognition (iD2GATE)

3The transistor-level description produced by iCPEX and other circuit extractors is

not suitable for input to iCOACH. iD2GATE will take as input a transistor-level descrip-

Ition in SPICE format and output a gate-level description in SPICE or in a format compa-

3tible with iCOACH. The transistor-level description is grouped into channel-connected

transistors and pass-transistor blocks using iDSIM [Over89a]. Each of these blocks isI
a
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then decomposed into its logic function using super-transistor decomposition and transis- 3
tor pairing. The following options are recognized by iD2GATE.

SYNOPSIS I
iD2GATE [-cv] [-i program] [-S file] [-s file] [-o file] file

Options I
-c

Produce a gate-level description in iCOACH format. The default is to produce 3
SPICE.

-i proram

Execute program instead of iDSIM to detect pass transistors.

- fileI

Use the specified file for output. 3
-S file 3

Use the specified file for statistics.

-s file

The pass transistors have already been detected and are in the specified file. I
-v

Add voltage sources to all undriven transistor gate nodes. Note: iDSIM requires 5
that a path exists between the gate of a transistor to a voltage source, or to a

3
I
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3 transistor drain, or to a transistor source. Also, all voltage sources must be

defined before any devices.

file

I The specified file contains the transistor-level description in SPICE.

3 D.2.6. Updating transistor sizes (iUPDTRAN)

3 The task of updating the transistor sizes in the symbolic layout after executing

iCOACH is both time-consuming and error prone. The program, iUPDTRAN, will

I automatically update the transistor sizes. The following options are recognized by

3 iUPDTRAN.

SYNOPSIS

U . iUPDTRAN icpex.log icoach.sta sym.stat gate.stat

3 Arguments

icpex.log

This file specifies the physical location of all transistors. This file is produced by

I iCPEX.

I icoach.sta

3 This file specifies the output from iCOACH.

3 sym.stat

This file maps the physical location of all transistors to their symbolic location

3 and is produced automatically by iSILVER.

I
I
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aate.stat

This file specifies which transistors have been replaced by gates and is automati-

cally produced by iD2GATE. 3
U
I
U
I
I
U
I
U
I
I
I
I
I
I
I
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